
5ESS®-2000 Switch
UNIX1 RTR Operating System
Reference Manual

235-700-200
Issue 7.00
November 1998

1. Registered trademark in the United States and other countries, licensed exclusively through X/Open
Company, Limited.

Copyright © 1998 Lucent Technologies. All Rights Reserved.

This information product (IP) is protected by the copyright laws of the United States and other countries. It may not be reproduced,
distributed, or altered in any fashion by any entity within or outside Lucent Technologies, except in accordance with applicable agreements,
contracts, or licensing, without the express written consent of the Lucent Technologies Customer Training and Information Products
organization and the business management owner of the IP.

This electronic document is protected by the copyright and trade secret laws of the United States and other countries. The complete document
may not be reproduced, distributed, or altered in any fashion. Selected sections may be copied or printed with the utilities provided by the
viewer software as set forth in the contract between the copyright owner and the licensee to facilitate use by the licensee, but further
distribution of the data is prohibited.

For permission to reproduce or distribute, call:

1–888–LTINFO6 (1–888–584–6366) (Customers inside continental United States)

1–317–322–6848 (Customers outside continental United States).

Notice

Every effort was made to ensure that the information in this IP was complete and accurate at the time of printing. However, information is
subject to change.

This IP describes certain hardware, software, features, and capabilities of Lucent products. The hardware, software, features, and capabilities
described may not be the same as the equipment that you have. This IP is for information purposes, and you are cautioned that it may not
describe your specific equipment.

Mandatory Customer Information

Interference Information: Part 15 of FCC Rules
Refer to the5ESS®-2000 Switch Product Specification IP.

Trademarks

5ESS is a registered trademarks of Lucent Technologies.
ANSI is a registered trademark of American National Standards Institute.
AUTOPLEX is a registered trademarks of Lucent Technologies.
COMMON LANGUAGE is a registered trademark and CLEI, CLLI, CLCI, and CLFI are trademarks of Bell Communications Research, Inc.
ESS is a trademark of Lucent Technologies.
ETHERNET is a registered trademark of Xerox Corporation
KEYSTONE is a registered trademark of Control Data Corporation.
MC68030, MC68040, and MC68060 are trademarks of Motorola, Inc.
MOTOROLA is a registered trademark of Motorola, Inc.
SLC is a registered trademarks of Lucent Technologies.
UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Ltd.

Warranty

Warranty information applicable to the5ESS®-2000 switch may be obtained from the Lucent Technologies Account Management organization.
Customer-modified hardware and/or software is not covered by warranty.

Ordering Information

This IP is distributed by the Lucent Technologies Customer Information Center in Indianapolis, Indiana.

The order number for this IP is 235-700-200. To order, call:

1–888–LUCENT8 (1–888–582–3688) or fax to 1–800–582–9568 (Customers inside continental United States).

1–317–322–6848 (Customers outside continental United States).

Support Telephone Numbers

Information Product Support Number:To report errors or ask nontechnical questions about this or other IPs produced by Lucent
Technologies, call 1–888–LTINFO6 (1–888–584–6366).

Technical Support Numbers:For initial technical assistance, call the Regional Technical Assistance Center (RTAC) at 1–800–225–RTAC
(1–800–225–7822). For further assistance, call the Customer Technical Assistance Management Center (CTAM) at 1–800–225–4672
(Customers inside continental United States). For Customers outside continental United States, call 1–630–224–4672. The CTAM line is
staffed 24 hours a day, 7 days a week.

Acknowledgment

Developed by Lucent Technologies Customer Training and Information Products.

How Are We Doing?

Title:

Identification No.: Issue No.: Date:

Lucent Technologies welcomes your feedback on this Customer Information Product (CIP). Your
comments can be of great value in helping us improve our CIPs.

1. Please rate the effectiveness of this CIP in the following areas:

2. Please check the ways you feel we could improve this CIP.

❒ Improve the overview/introduction ❒ Make it more concise/brief
❒ Improve the table of contents ❒ Add more step-by-step procedures/tutorials
❒ Improve the organization ❒ Add more troubleshooting information
❒ Include more figures ❒ Make it less technical
❒ Add more examples ❒ Add more/better quick reference aids
❒ Add more detail ❒ Improve the index

Please provide details for the suggested improvement.

3. What did you like most about this CIP?

4. Feel free to write any comments below or on an attached sheet.

If we may contact you concerning your comments, please complete the following:

Name: Telephone Number:

Company/Organization: Date:

Address:

When you have completed this form, please fold, tape and return to address on back
 or Fax to: 336 727-3043.

 Excellent Good Fair Poor
 Not

 Applicable

Ease of Use //////////////////
Clarity //////////////////
Completeness //////////////////
Accuracy //////////////////
Organization //////////////////
Appearance //////////////////
Examples

Illustrations

Overall Satisifaction //////////////////

5ESS®-2000 Switch UNIX RTR Operating System Reference Manual

235-700-200 7.00 November 1998

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1999 GREENSBORO, NC

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

--- Do Not Cut — Fold Here And Tape ---

DOCUMENTATION SERVICES
2400 Reynolda Road
Winston-Salem, NC 27199-2029

How Are We Doing?

Title:

Identification No.: Issue No.: Date:

Lucent Technologies welcomes your feedback on this Customer Information Product (CIP). Your
comments can be of great value in helping us improve our CIPs.

1. Please rate the effectiveness of this CIP in the following areas:

2. Please check the ways you feel we could improve this CIP.

❒ Improve the overview/introduction ❒ Make it more concise/brief
❒ Improve the table of contents ❒ Add more step-by-step procedures/tutorials
❒ Improve the organization ❒ Add more troubleshooting information
❒ Include more figures ❒ Make it less technical
❒ Add more examples ❒ Add more/better quick reference aids
❒ Add more detail ❒ Improve the index

Please provide details for the suggested improvement.

3. What did you like most about this CIP?

4. Feel free to write any comments below or on an attached sheet.

If we may contact you concerning your comments, please complete the following:

Name: Telephone Number:

Company/Organization: Date:

Address:

When you have completed this form, please fold, tape and return to address on back
 or Fax to: 336 727-3043.

 Excellent Good Fair Poor
 Not

 Applicable

Ease of Use //////////////////
Clarity //////////////////
Completeness //////////////////
Accuracy //////////////////
Organization //////////////////
Appearance //////////////////
Examples

Illustrations

Overall Satisifaction //////////////////

5ESS®-2000 Switch UNIX RTR Operating System Reference Manual

235-700-200 7.00 November 1998

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1999 GREENSBORO, NC

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

--- Do Not Cut — Fold Here And Tape ---

DOCUMENTATION SERVICES
2400 Reynolda Road
Winston-Salem, NC 27199-2029

5ESS ®-2000 Switch

UNIX RTR Operating System Reference Manual

CONTENTS PAGE

1. INTRODUCTION . 1-1

2. GETTING STARTED . 2-1

3. ADMINISTRATION . 3-1

4. EMACS DESCRIPTION. 4-1

5. COMMANDS. 5-1

GLOSSARY . G-1

INDEX . I-1

235-700-200
November 1998

TABLE OF CONTENTS

Issue 7.00 Page i

UNIX RTR Operating System Reference Manual

CONTENTS PAGE

1. INTRODUCTION . 1-1
1.1 PURPOSE . 1-1
1.2 UPDATE INFORMATION 1-1
1.3 ORGANIZATION . 1-1
1.4 USER FEEDBACK 1-3
1.5 DISTRIBUTION . 1-4
1.6 TECHNICAL ASSISTANCE 1-4
1.7 UNIX RTR OPERATING SYSTEM AVAILABILITY FEATURE 1-4

1.7.1 DESCRIPTION 1-4
1.7.2 ORGANIZATION OF FILES 1-5

235-700-200
November 1998

INTRODUCTION

Issue 7.00 Page 1-i

1. INTRODUCTION

1.1 PURPOSE

This manual is intended for use by operating telephone company personnel using the
UNIX RTR operating system features of the Lucent 3B20D computer in the
5ESS®-2000 switch. This manual provides the UNIX RTR operating system
commands that are available, as well as instructions for setting up logins. This
manual covers 5E11 and later software releases.

IT IS ASSUMED THAT THE USER OF THIS MANUAL KNOWS HOW TO USE A UNIX
RTR OPERATING SYSTEM ENVIRONMENT COMPUTER. For those people who need to
learn how to use the UNIX RTR operating system, formal training is available
through one of Lucent’s technical training locations. Contact your account
representative for more information.

Warning: The commands described in Chapter 5 of this manual are to be
used as they are described. Any deviation from the procedures described, or
misuse of these procedures, CAN result in a failure of the 5ESS-2000 switch.

1.2 UPDATE INFORMATION

In accordance with the 5ESS-2000 Switch Software Support Plan, the 5E10 software
release will be rated Discontinued Availability (DA) on December 4, 1998. The
information supporting 5E10 and earlier has been removed from this information
product.

This is an update to the 5ESS-2000 Switch UNIX RTR Operating System Reference
Manual 235-700-200, Issue 6.00 dated November 1997. This update covers software
releases 5E11 through 5E13.

Since this is a complete reissue and every page has the same issue number (Issue
7.00), no page inventory is included with this update package.

It is recommended that the update instructions be retained for future reference.
Retain your existing tabs and the binder with its cover and spine inserts, but replace
all the existing text pages.

This manual has been updated to include new 5E13 software release information to
add the following commands:

• vexpand (1)

• vcompress (1)

1.3 ORGANIZATION

This manual is divided into seven sections each separated by a tab. These sections
are:

• Introduction

• Getting Started

• Administration

• EMACS Description

• Commands

• Glossary.

235-700-200
November 1998

INTRODUCTION

Issue 7.00 Page 1-1

The Introduction gives a brief description of what this manual contains and a brief
description of the UNIX RTR Operating System Availability feature.

The section on Getting Started contains a brief description of the following:

• Logging in

• Logging out

• How to communicate through your terminal

• How to run a program

• The current directory

• Pathnames

• Writing a program

• Text processing

• Surprises.

The section on Administration is intended for use by an administrator. This section
describes procedures for securing the dial-up access to a supplementary trunk line
work station or a text recent change terminal using new login software.

The EMACS Description section describes the EMACS screen editor and gives all the
normally used commands and options that are available with the UNIX RTR
operating system on the 5ESS-2000 switch.

The Commands section describes programs intended to be invoked directly by the user
or by command language procedures, as opposed to subroutines, which are intended to
be called by the user’s programs. Commands generally reside in the directory /bin (for
bin ary programs). Some programs also reside in /usr/bin , to save space in /bin . The
directories are also searched automatically by the command interpreter called the
shell. Commands that reside in other directories are noted on the command page.

This section consists of many independent entries of a page or more each. The name of
the entry appears in the upper corner of the page. Entries within the section are
alphabetized. Some entries may describe several routines, commands, etc. In such
cases, the entry appears only once, alphabetized under its "major" name.

All entries are based on a common format, not all of whose parts always appear.

• The NAME part gives the name(s) of the entry and briefly states its purpose.

• The SYNOPSIS part summarizes the use of the program being described.

• The DESCRIPTION part provides additional information about the program or
facility outlined in the "Name" and "Synopsis" parts.

• The EXAMPLES(S) part gives example(s) of usage, where appropriate.

• The FILES part gives the filenames that are built into the program.

• The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be
produced. Messages that are intended to be self-explanatory are not listed.

• The WARNINGS part points out potential pitfalls.

INTRODUCTION 235-700-200
November 1998

Page 1-2 Issue 7.00

The BUGS part gives known bugs and sometimes deficiencies. Occasionally, the
suggested fix is also described.

A few conventions are used in this section:

• Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program
names found elsewhere in the manual. Note that this convention is not used in the
"SYNOPSIS" or "SEE ALSO" part; regular print is used in place of italics.

Square brackets [] around an argument prototype show that the argument is
optional. When an argument prototype is given as "name" or "file," it always refers
to a filename.

Ellipses (...) are used to show that the previous argument prototype may be
repeated.

A final convention is used by the commands themselves. An argument beginning
with a (−), plus (+), or equal sign (=) is often taken to be some sort of flag
argument, even if it appears in a position where a filename could appear.
Therefore, it is not wise to have files whose names begin with −, +, or =.

On most systems, all entries are available on-line via the man(1) command. As these
on-line entries are updated from time to time, the on-line version may disagree with
the entries in this manual. When they do disagree, the on-line version is the correct
version to use.

1.4 USER FEEDBACK

The producers of this IP are constantly striving to improve quality and usability.
Please use the enclosed user feedback form for your comments and to advise us of any
errors. If the form is missing or your comments will not fit, you can write to us at the
following address:

Lucent Technologies Network Systems
Documentation Services
2400 Reynolda Road
Winston-Salem, NC 27199–2029

Please include the issue number and/or date of this IP, your complete mailing address,
and telephone number. We will attempt to answer all correspondence within 30 days,
informing you of the disposition of your comments.

You may also call our documentation HOTLINE if you need an immediate answer to a
documentation question. This HOTLINE is not intended to eliminate the use of the
user feedback form, but rather to enhance the comment process. The HOTLINE
number is 1-888-LTINFO6 (1-888-584-6366) and it is available from 7:30 a.m. to 6:00
p.m., Eastern Standard time. Outside of those hours, the line is serviced by an
answering machine. You can leave a message on the answering machine and someone
will return your call the following business day.

Also, IP users who have access to UNIX system electronic mail facilities may send
comments via electronic mail. The electronic address is hotline5@wrddo.lucent.com .
Please make sure that the IP title, number, and issue number are included in the mail
along with the sender’s name, phone number, and address.

235-700-200
November 1998

INTRODUCTION

Issue 7.00 Page 1-3

1.5 DISTRIBUTION

This document is distributed by the Lucent Technologies Customer Information Center
(CIC) in Indianapolis, Indiana. Most operating telephone companies should place
orders through their documentation coordinator. Some companies may allow customers
to order directly from the CIC, however, the majority do not. Companies that use
documentation coordinators to manage their orders receive a significant discount. If
you do not know the name/number of the documentation coordinator for your company,
you may call 1-888-LUCENT-8 (1-888-582-3688) to obtain their name and telephone
number.

Customers not represented by a documentation coordinator and Lucent employees can
order the documentation for the 5ESS-2000 switch directly from the CIC. Proper
billing information must be provided.

Mail these orders to the following address:

Lucent Technologies
Customer Information Center
Order Entry
2855 N. Franklin Road
Indianapolis, IN 46219

Orders may also be called in on 1-888-LUCENT-8 (1-888-582-3688) or faxed in on
1-800-566-9568.

1.6 TECHNICAL ASSISTANCE

Technical assistance for the 5ESS-2000 switch can be obtained by calling the Regional
Technical Assistance Center (RTAC) at1-800-225-RTAC. This telephone number is
monitored 24 hours a day, 7 days a week. During regular business hours, your call will
be answered by your local RTAC. Outside of normal business hours, all calls will be
answered at a centralized technical assistance center where service-affecting problems
will be dispatched immediately to your local RTAC. All other problems will be referred
to your local RTAC on the next regular business day.

1.7 UNIX RTR OPERATING SYSTEM AVAILABILITY FEATURE

1.7.1 DESCRIPTION

The UNIX RTR Operating System Availability feature allows the office craft to use
some of the spare computing power of the 3B20D computer for small administrative
tasks. For example, the craft could keep work schedules and spare circuit pack
inventory lists on the 3B20D computer.

The following are features of the UNIX RTR Operating System Availability feature:

• Two new disk partitions; unixa and unixabf. The unixa partition is mounted as
/unixa. This partition contains the on-line manual pages and the control and
spooling files for the at, cron, and lpr commands. The unixabf partition is mounted
as /unixa/users. This partition is provided as an area for the office craft to create
files for their own use. The design of the system is such that excess file usage in
these partitions will not overflow into the partitions needed for operation of the
switch. In small disk configurations, the unixabf partition is not available. In
these configurations, the unixa partition is also used for office craft files.

INTRODUCTION 235-700-200
November 1998

Page 1-4 Issue 7.00

• A new UNIX RTR operating system command, admin, that allows the creation of
nonroot logins. It is strongly advised that the root login only be used under
direction of Lucent field support.

• A new UNIX RTR operating system command, lpr, to spool output to the ROP
(receive-only printer).

• On-line manual pages and a UNIX RTR operating system command, man, to
access them.

• New UNIX RTR operating system commands, at and cron, to allow scheduling of
commands in the future.

1.7.2 ORGANIZATION OF FILES

The /unixa or /unixa/users directory system is the location that all the craft files will
be created and stored. The /unixa directory system is structured as follows:

/unixa/users/manager # HOME directory for manager
| /al # HOME directory for al

| /don # HOME directory for don

| /jim # HOME directory for jim

|

/man/1.admin # |

| /... # |On-line manual pages

| /1.write # |

|

/tmp # Directory to hold temporary files

|

/spool/cron/crontabs/root # Root’s crontab file

| /don # Don’s crontab file

|

/atjobs/b.123456 # Batch job control file

/b.6780 # Batch job control file

/a.980 # At job control file

Unless directed by Lucent field support, craft UNIX RTR operating system users
should create files only in (or below) their own HOME directory or the /unixa/tmp
directory. Also, no attempt should be made to delete or change any files outside these
two directories.

235-700-200
November 1998

INTRODUCTION

Issue 7.00 Page 1-5

UNIX RTR Operating System Reference Manual

CONTENTS PAGE

2. GETTING STARTED . 2-1
2.1 BASIC INFORMATION 2-1
2.2 LOGGING IN . 2-1
2.3 HOW TO COMMUNICATE THROUGH YOUR TERMINAL 2-1
2.4 HOW TO RUN A PROGRAM 2-2
2.5 THE CURRENT DIRECTORY 2-3
2.6 PATHNAMES . 2-3
2.7 SURPRISES . 2-3

235-700-200
November 1998

GETTING STARTED

Issue 7.00 Page 2-i

2. GETTING STARTED

2.1 BASIC INFORMATION

This section provides the basic information needed to get started, such as how to log
in, how to communicate through your terminal, and how to run a program. The
UNIXSystem Users’ Handbook (320-042) and the UNIX System Quick Reference
Guide (307-129) will provide you with general information on how the UNIX RTR
operating system works. You should refer to the UNIX System Users’ Handbook
(320-042) if you need a more complete introduction to the system. For more
information on manual pages referred to in this section but not found in the
Commands Section, refer to the UNIX System Quick Reference Guide (307-129). Not
all the commands and procedures found in the UNIX System Users’ Handbook
(320-042) and the UNIX System Quick Reference Guide (307-129) will work with the
5ESS®-2000 switch. Before using any commands and procedures on the 5ESS-2000
switch, be sure to read this manual thoroughly and use only the commands and
procedures provided in this manual.

2.2 LOGGING IN

Most terminals have a speed switch that should be set to the appropriate speed and a
half-/full-duplex switch that should be set to full-duplex. When a connection (at the
speed of the terminal) has been established, the system types login: , and then you
type your user name followed by the "return" key. If you have a password (and you
should!), the system asks for it, but does not print ("echo") it on the terminal. After
you have logged in, the "return," "new line," and "line feed" keys will give exactly the
same result.

It is important that you type your login name in lowercase if possible; if you type
uppercase letters, the system assumes that your terminal cannot generate lowercase
letters and that you mean all further uppercase input to be treated as lowercase.
When you have logged in successfully, the shell returns a $. (The shell is described
"How to Run a Program, Section 2.4").

For more information, consult login(1), which discusses the login sequence in more
detail; and stty(1), which tells you how to describe the characteristics of your terminal
to the system. Profile(4) explains how to accomplish this task automatically every time
you log in. For information on the logout procedure, see Section 3.5.2.

2.3 HOW TO COMMUNICATE THROUGH YOUR TERMINAL

When you type input, the system gathers your characters and saves them. These
characters are not given to a program until you type a "return" (or "new line"), as
described in "Logging In, Section 2.2."

Your terminal is a full-duplex input/output terminal. It has full read-ahead capability,
which means that you can type at any time, even while a program is prompting you.
Of course, if you type during output, the output is interspersed with the input
characters; however, your input is saved and interpreted in the correct sequence.
There is a limit to the amount of read-ahead, but it is generous and not likely to be
exceeded unless the system is in trouble. When the read-ahead limit is exceeded, the
system throws away all the saved characters.

On an input line from a terminal, the character @ "kills" all the characters typed
before it. The character # erases the last character typed. Successive uses of # erase
characters back to, but not beyond, the beginning of the line; @ and # can be typed as

235-700-200
November 1998

GETTING STARTED

Issue 7.00 Page 2-1

themselves by preceding them with \ (thus, to erase a \, you need two #s). These
default erase and kill characters can be changed; see stty(1).

The ASCII DC3 (CONTROL-S) character can be used to temporarily stop output. It is
useful with CRT terminals to prevent output from disappearing before it can be read.
Output is resumed when aDC1 (CONTROL-Q) or a second DC3 (or any other
character, for that matter) is typed. The DC1 and DC3 characters are not passed to
any other program when used in this manner.

The ASCII DEL (a.k.a. "rubout") character is not passed to programs; but instead
generates aninterrupt signal, just like the "break," "interrupt," or "attention" signal.
This signal, treated as lowercase, generally causes whatever program you are running
to stop. It is typically used to stop a long printout that you do not want. However,
programs can arrange either to ignore this signal altogether, or to be notified when it
happens (instead of being stopped). The editor ed(1), for example, catches interrupts
and stops what it is doing, instead of terminating, so that an interrupt can be used to
halt an editor printout without losing the file being edited.

The quit signal is generated by typing the ASCII FS character. It not only causes a
running program to stop, but also generates a file with the "core image" of the stopped
process.Quit is useful for debugging.

Besides adapting to the speed of the terminal, the UNIX RTR Operating System tries
to determine whether you have a terminal with the "new-line" function, or whether it
must be simulated with a "carriage-return" and "line-feed" pair. In the latter case,
allinput "carriage-return" characters are changed to "line-feed" characters (the
standard line delimiter); and a "carriage-return" and "line-feed" pair is echoed to the
terminal. If you get into the wrong mode, use the stty(1) command to correct it.

Tab characters are used freely in system source programs. If your terminal does not
have the tab function, you can arrange to have tab characters changed into spaces
during output and echoed as spaces during input. The stty(1) command can be used to
set or reset this mode. The system assumes that tabs are set every eight-character
positions.

2.4 HOW TO RUN A PROGRAM

When you have successfully logged into the system, a program called the shell is
listening to your terminal. The shell reads the lines you type, splits them into a
command name and its arguments, and executes the command. A command is simply
an executable program. Normally, the shell looks first in your current directory (see
"The Current Directory", Section 2.5) for a program with the given name. If none is
there, it looks in system directories. There is nothing special about system-provided
commands except that they are kept in directories where the shell can find them. You
can also keep commands in your own directories and arrange for the shell to find
them there.

The command name is the first word on an input line to the shell; the command and
its arguments are separated from one another by space and/or tab characters.

When a program stops, the shell ordinarily regains control and returns a $ to show
that it is ready for another command. The shell has many other capabilities, which
are described in detail insh(1).

GETTING STARTED 235-700-200
November 1998

Page 2-2 Issue 7.00

2.5 THE CURRENT DIRECTORY

The UNIX RTR Operating System file system is arranged in a hierarchy of directories.
When the system administrator gives you a user name, he or she also creates a
directory for you (ordinarily with the same name as your user name). (This directory
is known as your login or home directory.) When you log in, your home directory
becomes your current or working directory; and any filename you type is by default
assumed to be in that directory. Because you are the owner of this directory, you have
full permissions to read, write, alter, or destroy its contents. Permissions for
directories and files other than your own may be granted or denied to you by their
owners, or by the system administrator. To change the current directory, use cd
[explained under sh(1)].

2.6 PATHNAMES

To refer to files not in the current directory, you must use a pathname. Full
pathnames begin with /, which is the name of the root directory of the whole file
system. Following the initial slash, each directory and subdirectory is named in
succession, until the filename is reached. Each directory name is followed by a/. For
example, /usr/ae/filex refers to file filex in directory ae, while ae is itself a
subdirectory ofusr ; usr springs directly from the root directory.

If your current directory contains subdirectories, the pathnames of files therein begin
with the name of the corresponding subdirectory (without a prefixed /). Without
important exception, a pathname may be used anywhere a filename is required.

Important commands that change the contents of files are cp(1), mv(1), and rm(1),
which copy, move (i.e., rename), and remove files. To find out the status of files or
directories, use ls(1). Use mkdir(1) for making directories andrmdir(1) for destroying
them.

For further discussion of the file system, see the UNIX System Users’ Handbook
(320-042).

2.7 SURPRISES

Certain commands provide inter-user communication. Even if you do not plan to use
them, it would be well to learn something about them, because someone else may
direct them to you. To communicate with another user currently logged in,write(1) is
used;mail(1) leaves a message whose presence is announced to another user when he
or she next logs in.

When you log in, a message-of-the-day may greet you before the first $.

235-700-200
November 1998

GETTING STARTED

Issue 7.00 Page 2-3

UNIX RTR Operating System Reference Manual

CONTENTS PAGE

3. ADMINISTRATION . 3-1
3.1 INTRODUCTION . 3-1

3.1.1 DIAL-UP FACILITIES 3-1
3.1.2 LOGIN CAPABILITY FEATURES 3-1

3.2 HARDWARE . 3-1
3.3 SOFTWARE . 3-1

3.3.1 GENERAL 3-1
3.3.2 ADDING NEW LOGINS 3-1
3.3.3 ADDING A SECOND PASSWORD (OPTIONAL) 3-2
3.3.4 DATA BASE 3-3

3.4 INITIALIZE THE TELETYPEWRITER CONTROLLER 3-4
3.5 USING THE LOGIN 3-4

3.5.1 GENERAL 3-4
3.5.2 LOGGING OFF 3-4

3.6 PASSWORD PROTECTED COMMANDS 3-4
3.7 MODIFYING THE RM COMMAND DEFAULT OPTIONS 3-6

LIST OF FIGURES

Figure 3-1 — Diagram of Cable From Modem to IOP 3-7

Figure 3-2 — Description of an Entry in /etc/passwd 3-8

235-700-200
November 1998

ADMINISTRATION

Issue 7.00 Page 3-i

3. ADMINISTRATION

3.1 INTRODUCTION

3.1.1 DIAL-UP FACILITIES

The use of remote dial-up facilities such as the dial-up supplementary trunk line work
station (STLWS) and the dial-up text recent change terminal has greatly enhanced the
effectiveness of the field support effort.

A shortcoming of these dial-up facilities is that, unless the data set has been turned
off, there is nothing to prevent an unauthorized person from obtaining access to a
5ESS®-2000 switch. For convenience, the data sets are usually left powered-on.

This section describes the procedures for securing the dial-up access to an STLWS or a
text recent change terminal using new login software available with the UNIX RTR
operating system in 5E11 and later software release offices.

3.1.2 LOGIN CAPABILITY FEATURES

The login software provides for the conventional login and password security of a
UNIX RTR operating system user environment. While this section details procedures
for adding a login to the STLWS or the text recent change terminal, any terminal
[except the Master control center (MCC) and remote maintenance facilities] can be
modified to require a login by making the necessary equipment configuration (ECD)
data changes.

The login code provides some additional flexibility in the configuration of the
terminals. For users requiring only UNIX RTR operating system capability, the login
software allows the STLWS and the recent change terminals to be logged in directly as
UNIX RTR operating system terminals.

This section also describes an optional second password (similar to the External
Security Code or Network Access Password as used on other systems) which may be
required for all logins.

3.2 HARDWARE

The only hardware concern for the login capability is the cable from the input/output
processor (IOP) to the data set. This cable is slightly different from a standard IOP
cable used with terminals in the office. The standard IOP cable, designed for use with
terminals, will not work with a data set. A diagram of the correct cable is shown in
Figure 3-1. The correct cable includes all necessary connections to allow the data set
to signal the IOP when a user hangs up the telephone. If no login is required, this
signaling is not necessary. If the port has been updated to require a login, and an
incorrect cable is used, only the first user after each TTY restore, would be required to
login.

3.3 SOFTWARE

3.3.1 GENERAL

Software changes for the login capability include updating the /etc/passwd file to
establish the login and recent change modifications to execute the login process.

3.3.2 ADDING NEW LOGINS

As with any UNIX RTR operating system, new logins are added by updating the file
/etc/passwd. The user must be in UNIX RTR operating system to add new logins.
Enter the UNIX RTR operating system with the command:

235-700-200
November 1998

ADMINISTRATION

Issue 7.00 Page 3-1

rcv:menu,sh;

Adding new logins is done by using the admin(1) tool available on UNIX RTR
operating systems. [See the manual page for admin(1) in the Commands section of
this manual.]

Admin(1) makes all required entries in the /etc/passwd file while protecting other
entries from possible corruption. Admin(1) does not provide a password. The user will
be prompted for a password when the login is first used.

To secure the dial-up terminals, the following three logins may be established using
admin(1):

1. To set up a UNIX RTR operating system login, enter:
admin −a login name −u

2. To set up a Craft shell login, enter:
admin −a login name −p

In the examples above, the −a option is the login name; the −u option shows that this
is a UNIX RTR operating system login; and the −p option shows that this login will
use a pds/mml shell.

Note that login name is a variable that is replaced by the actual login.

Printing the /etc/passwd should show the new logins. A description of an entry in
/etc/passwd is shown in Figure 3-2.

3.3.3 ADDING A SECOND PASSWORD (OPTIONAL)

More extensive security is desirable by requiring a second password. To add the
second password, enter:
passwd deamon

The user will be prompted to enter the additional password.

When dial-up users log on, they will be prompted for the "Machine Password." The
deamon password is entered in response.

Note there is only one "Machine Password" for all logins. This provides an effective
method of securing all logins without changing individual passwords.

To clear the deamon password, enter:
admin −c deamon

This command will remove the deamon password, and future users will not be
required to enter one.

When the new logins and the optional second password have been entered, exit the
UNIX RTR operating system by entering a CONTROL-D.

Note: Procedures in sections 3.3.1 through 3.3.2, though still supported, are not
recommended with the advent of the 5ESS-2000 Switch Command Restriction
procedure. The preferred login and password administration scheme is called authority
management. Authority management is documented in the Operations section of
Lucent 235-105-210, Routine Operations and Maintenance.

ADMINISTRATION 235-700-200
November 1998

Page 3-2 Issue 7.00

3.3.4 DATA BASE

3.3.4.1 General

Only a few data base changes are required to convert an STLWS or recent change
terminal into a secure dial-up facility. It is assumed that the user is familiar with the
use of recent change and with equipping these dial-up facilities. The following
procedures assume that the teletypewriter controller and the teletypewriter are
equipped and that all hardware has been connected to the proper location on the IOP
backplane.

3.3.4.2 Data Base Changes for a Dial-Up STLWS

Equipping a secure dial-up STLWS terminal requires four ECD changes. These
changes lower the baud rate to 1200 baud and establish paths to execute the login
process. The baud rate is lowered to 1200 baud because the dial-up modems normally
operate at 1200 baud. The following ECD changes are required to set up a secure
dial-up STLWS:

Lower the Baud Rate
Lowering the STLWS baud rate to 1200 baud requires one change on the
ciopt form. If your terminal is on port /dev/ttyxx , then the correct ciopt
form to select is ttyopxx . For example, if your terminal is on port
/dev/tty9, select ciopt form ttyop9, /dev/tty10 select ttyop10, etc. On this
form, change ttopt_name (field 2) to PDS12 (black & white terminal) or
PDS12C (color terminal).

Large Scroll Region:
On Page 4 of the cdopt forms STLWSCG (color terminal) and VT100DAP
(black & white terminal), change field 60, sub-fields 11 and 12, from ’2’,
’3’ to ’0’, ’2’. Change field 94, first item from ’23’ to ’2’, also.

Set Up Paths for the Login Process
To execute the login process on an STLWS terminal, ECD changes are
required on two getty forms. Two forms are involved since one form is
required for the message section of the STLWS screen and a second form
is used by the display region of the screen. The two "getty" form names
differ only in that the TTY name in gettyres (field 1) is lowercase on one
form and uppercase on the other form; for example: gettyl and gettyL .
The same change is required on both getty forms. Change shlname (field
4) to /etc/login .

3.3.4.3 Data Base Changes for a Dial-Up Recent Change Terminal

To equip a dial-up text recent change terminal requires only two ECD changes. These
changes lower the baud rate to 1200 baud and establish a path to execute the login
process.

Lower the Baud Rate
Lowering the recent change terminal baud rate to 1200 baud may require
one change on the ciopt form. If your terminal is on port /dev/ttyxx , then
the correct ciopt form to select is ttyopxx . For example, if your terminal
is on port /dev/tty9, select ciopt form ttyop9, /dev/tty10 select ttyop10, etc.
On this form, change ttopt_name (field 2) to PDS12.

Set Up the Path for the Login Process
To execute the login process for a dial-up recent change terminal, an ECD
change is required on one getty form. The TTY name in gettyrec (field 1)
is lowercase (for example: gettyw). Only one form requires updating, since
this is a text recent change terminal and there is no display region.

235-700-200
November 1998

ADMINISTRATION

Issue 7.00 Page 3-3

On the getty form, change shlname (field 4) to /etc/login .

3.3.4.4 Computer Access Restriction

For increased security the Computer Access Restriction (CAR) feature may be used.
This feature can be used to restrict access to your modem line(s) such that only callers
from a listed set of telephone numbers can get through.

Instructions for setting up the CAR feature can be found in the LASS User’s Manual
(235-190-300), Section 9, Issue 2.00.

3.4 INITIALIZE THE TELETYPEWRITER CONTROLLER

After the ECD changes have been completed, the new options must be down loaded
into the teletypewriter controller (TTYC) for the secured ports. This is done by
restoring the TTYC. To restore the TTYC, enter:
RST:TTYC=aa: (mml) RST:TTYC aa! (pds) Where aa is the TTYC number.

3.5 USING THE LOGIN

3.5.1 GENERAL

When the login process has been successfully completed, the user may continue with a
normal session. The only exception may be a message, immediately after login, asking
the user to hit the "break" key. This message will appear only when logging in as a
UNIX RTR operating system shell system terminal.

3.5.2 LOGGING OFF

When logging off a dial-up recent change terminal or a dial-up UNIXR operating
system terminal, the user needs to only enter a CONTROL-D. Logging off the dial-up
STLWS is more complex since the display and message regions are, in effect, two
separate screens. The correct procedure for logging off an STLWS is:

1. Go to the message page (Page 120)

2. Go to "message mode"

3. Enter CONTROL-D.

These steps are necessary because the display region is frozen to prevent it from
scrolling off the screen. Since the CONTROL-D will not be accepted in "command
mode," the user must be in "message mode" to log off. If the next user logs on as a
UNIX RTR operating system terminal, they will be limited to the bottom of the
display. By going to the message page (Page 120) only, the top few lines are frozen
giving a UNIX RTR operating system user more work space.

If a user logs on as a UNIX RTR operating system terminal and finds that he/she is
stuck on the bottom of the display, the only easy solution is to reset the terminal. This
can be done by pressing the "reset" key on the terminal, if it has one, or power cycling
the terminal.

3.6 PASSWORD PROTECTED COMMANDS

This feature, if enabled by the site, restricts access to the UNIX RTR operating system
shell, Office Data Base Editor (ODBE), and/or Access Editor (ACCED)

• RCV:MENU:SH

• RCV:MENU:ODBE

• RCV:MENU:ACCED

ADMINISTRATION 235-700-200
November 1998

Page 3-4 Issue 7.00

• RCV:MENU:SCREEN

• POKE 194.

The feature is enabled as follows:

From theUNIX RTR operating system, create new logins for each command you wish
to protect using the -R option of the admin command. The login must be the name of
the command followed by a dash (-). Enter

admin -a sh- -R # To protect the UNIX RTR operating system
shell.

admin -a odbe- -R # To protect ODBE.
admin -a acced- -R # To protect ACCED.

Then add a password to each of these logins. Enter

passwd sh- # To add a password to the UNIX RTR
operating system shell.

passwd odbe- # To add a password to ODBE.
passwd acced- # To add a password to ACCED.

From this point, the selected command(s) will prompt for the corresponding login’s
password.

The feature may be disabled as follows:

From theUNIX RTR operating system, delete the login corresponding to the command.
Enter

admin -d sh- -R # To unprotect the UNIX RTR operating
system shell.

admin -d odbe- -R # To unprotect ODBE.
admin -d acced- -R # To unprotect ACCED.

An additional option is also provided that changes the access permissions of the UNIX
RTR operating system shell such that the user has read-only permission except in the
"tmp" directories. With this option selected, the shell user also will not be able to run
some of the UNIX RTR operating system commands.

To select this option, create the "sh-" login with the ’-r’ option rather than the ’-R’
option and enter

admin -a sh- -r # Limited permission shell

If you select this option, enter the shell, and want full permissions, you must use the
"su" command and know the password for the login ’root,’ then enter

su root
<root’s password>

Note that the "su" and "passwd" commands only operate when entered by
RCV:MENU: SH. They will not operate from RCV:MENU:SCREEN nor POKE 194.

235-700-200
November 1998

ADMINISTRATION

Issue 7.00 Page 3-5

Password protected commands is NOT a security feature. It can be overridden by most
experienced Lucent and telephone company field support personnel. It is provided, as
requested, for the case where a site wants to block inexperienced personnel and/or
clerks from accessing these commands.

3.7 MODIFYING THE RM COMMAND DEFAULT OPTIONS

The UNIX RTR operating system "rm" command supports an interactive option ("-i"),
which prompts the user for confirmation before removing each file. This provides a
second chance to avoid accidental removal of a file or files.

In some situations, it may be desirable to have the "rm" command invoked with the
interactive option by default. This can be accomplished by setting up a shell alias for
the "rm" command. The procedure for establishing the alias is as follows:

1. From the UNIXRTR operating system shell, copy the default shell alias file
(provided) to the name expected by the UNIX RTR operating system shell. This
file contains an alias for the "rm" command.

cp /etc/default.shrc /etc/shrc

2. Exit any active UNIX RTR operating system shells, including those invoked using
RCV:MENU or SCREEN. (The alias file is only read when the shell is invoked.)

The shell "rm" alias is now active for all interactive shells, until the etc/shrc file
created above is removed. When the "rm" command is used, the user will be prompted
for each file before it is removed, just as if "rm -i" had been entered. This includes all
shells established using RCV:MENU and the SCREEN program, but will not affect
non-interactive shell scripts or applications.

The "rm" alias can be bypassed either by using the full path of the "rm" command
(/bin/rm) or by executing the "unalias " command. Unalias removes the alias for the
remainder of the shell session or until the alias is re-established by executing the
"alias " command.

See the UNIX RTR operating system shell (sh) manual page for more information.

ADMINISTRATION 235-700-200
November 1998

Page 3-6 Issue 7.00

PINTHISINDICATESNUMBEREQL

1.

YourConfigureToSureBe
8)(PinDCDThatSuchModem

PartyCallingTheWhenDrops
Disconnects.

2.

NOTES:

SolderHasASide
HolesALLAroundPads

3
4

5

7

8
20

CONNECT
TO

MODEM

982-AESHELLWITHDB-25P

BN

BM

BL

BK

BJ

BH

BF

BE

BD

BC

BB

BA

AM

AK

AH

AE

AC

AA

AL

AF

AB

AN

AD

AJ

CONNECTOR982-AE
FRONTTHEFROMLOOKING

FEET50
MAXIMUM

CONNECT
TO

TN-74B

BF

BK
BE

AJ

BH

BJ
AA

BA
BM

2

Figure 3-1 — Diagram of Cable From Modem to IOP

235-700-200
November 1998

ADMINISTRATION

Issue 7.00 Page 3-7

stlw:2xMm;YhM,MOXA:1329:1329:Dialup STLWS: /cft/sh1: /cft/bin/pdshel.app

|_1_| |______2_________| |_3_| |_4_| |____5______| |__6__| |______7________|

[1] Login id
[2] Encrypted password
[3] User id
[4] Group id
[5] Comment field (optional)
[6] Home directory after successful login
[7] Command to execute after successful login (optional)

Figure 3-2 — Description of an Entry in /etc/passwd

ADMINISTRATION 235-700-200
November 1998

Page 3-8 Issue 7.00

UNIX RTR Operating System Reference Manual

CONTENTS PAGE

4. EMACS DESCRIPTION . 4-1
4.1 INTRODUCTION . 4-1
4.2 BASIC CONCEPTS 4-1

4.2.1 GENERAL 4-1
4.2.2 THE CHARACTER SET 4-1
4.2.3 THE DISPLAY 4-2
4.2.4 THE TEXT IN THE BUFFER 4-2
4.2.5 COMMAND STRUCTURE 4-3
4.2.6 ARGUMENTS AND PARAMETERS 4-3

4.3 BASIC EMACS COMMANDS 4-3
4.3.1 GENERAL 4-3
4.3.2 GETTING HELP OR GETTING OUT OF TROUBLE 4-4
4.3.3 SIMPLE CURSOR MOVEMENT COMMANDS 4-5
4.3.4 SIMPLE TEXT DELETING AND MOVING

COMMANDS 4-6
4.3.5 SIMPLE FILE AND BUFFER COMMANDS 4-7
4.3.6 SIMPLE SEARCH AND REPLACE 4-10

4.4 ADVANCED EDITING COMMANDS 4-12
4.4.1 GENERAL 4-12
4.4.2 INSERTING ODD CHARACTERS 4-12
4.4.3 COMMANDS RELATED TO WINDOWS 4-12
4.4.4 ADVANCED SEARCH AND REPLACE COMMANDS . . . 4-13
4.4.5 MACROS, KEYBOARD MACROS, AND INPUT FILES . . 4-14
4.4.6 COMMANDS THAT ESCAPE TO THE UNIX RTR

OPERATING SYSTEM 4-15
4.4.7 MISCELLANEOUS COMMANDS 4-16

4.5 MODES . 4-19
4.5.1 GENERAL 4-19
4.5.2 DISPLAY MODES (PARAMETERS) 4-19
4.5.3 INTERFACE MODES 4-20
4.5.4 COMMAND MODES 4-22
4.5.5 TERMINAL MODES 4-24
4.5.6 SPECIFYING DEFAULT MODES FOR A FILE 4-25

4.6 GETTING STARTED 4-25
4.6.1 GENERAL 4-25
4.6.2 TERMINAL TYPE 4-25
4.6.3 INITIALIZATION FILE 4-25
4.6.4 COMMAND LINE ARGUMENTS 4-26
4.6.5 HELPFUL HINTS 4-26

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-i

4.6.6 LIMITATIONS OF THE EDITOR 4-27
4.6.7 RECOVERING FROM VARIOUS PROBLEMS 4-27

4.7 CONCLUSIONS . 4-27

LIST OF FIGURES

Figure 4-1 — EMACS Screen Display 4-28

LIST OF TABLES

Table 4-1 — EMACS COMMAND SUMMARY 4-28

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-ii Issue 7.00

4. EMACS DESCRIPTION

4.1 INTRODUCTION

EMACS is a screen editor that can be used to create or to edit files using a display
terminal. The user interface to this editor is quite simple. The user is presented with
a display of the contents of a portion of the buffer being edited. This display indicates
exactly what is in the area being displayed, including any non-printing characters. The
contents of the buffer being edited can be read from or written to a UNIX RTR
operating system file. Characters typed by the user will be inserted into the buffer
(and reflected in the display) at the point indicated by the terminal’s cursor. This is
the primary mechanism for entering and modifying text.

Control characters and escape sequences can be used to perform other editing
functions, such as moving the cursor to a different position in the buffer, deleting text,
replacing text, or searching. Thus there is only one mode of interpretation of
characters typed to EMACS, in which either text to be entered or commands can be
entered. This simple interface relieves users of the need to remember what mode they
are in, and prevents the disastrous mistakes that can occur when text to be inserted is
evaluated as an editor command. A simple mechanism is provided to allow a user to
insert control and escape characters when needed.

Although there is a rich vocabulary of commands available, including commands that
perform functions tailored to a particular application (such as indenting a C program),
the most common way in which EMACS is used to edit is simply to position the cursor
over the area to be changed, and enter the changes. The immediate feedback provided
by the visual display appears to be very important to the user.

Table 4-1 provides a summary of EMACS commands.

4.2 BASIC CONCEPTS

4.2.1 GENERAL

Before going into the editing commands of EMACS, some basic concepts should be
learned. EMACS operates rather differently from line oriented editors, and even from
other screen oriented editors in the way that it treats the screen and the keyboard.
Some of its conventions for displaying and inputing characters are not like other
UNIX RTR operating system tools, primarily because they were originally developed
for another environment.

4.2.2 THE CHARACTER SET

EMACS operates on characters from an alphabet of 256 different characters. These
include the 128 ASCII characters that can be entered from a terminal, and 128 "Meta"
characters. A Meta character is entered by preceding it with an escape (ESC key).

In this document and in the displays produced by EMACS, control characters are
indicated by the character ’^’ followed by the equivalent printable character (usually
capitalized). Thus ’^X’ represents a control-x, which is typed by hitting the control and
’x’ keys simultaneously. For some unusual non-printing characters, the display is not
obvious:

^? Rubout or delete (ASCII 0177)

^@ Null (ASCII 0)

^[Escape (ASCII 033)

^\ The "fs" character (ASCII 034)

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-1

^] The "gs" character (ASCII 035)

^^ The "rs" character (ASCII 036)

^_ The "us" character (ASCII 037)

Meta characters are typed to EMACS by hitting the escape character, and then any
second character (including a control character). They are displayed by EMACS as
"M-" followed by the equivalent ASCII character. Thus "M-a" (Meta - a) is the
character obtained by typing escape followed by a, and "M-^B" (Meta - control-b) is the
character obtained by typing escape followed by control-b.

4.2.3 THE DISPLAY

The display screen contains a window showing a view of the buffer being edited, which
contains about 20 lines on a typical display terminal. The terminal cursor is positioned
at the editor cursor (the position where editing takes place). Each line of the buffer
(delimited by a newline character) begins at the beginning of a display line. A line that
exceeds the screen width is normally continued on the next screen line. Whenever a
line must be continued on the next screen line an exclamation mark (!) is displayed in
the last column of the first screen line. If the editor is in line number (lnumb) mode,
then a line number is printed at the beginning of each line in the buffer.

Printable characters are displayed normally, while tabs are displayed as white space
that fills up the space on the screen until the next position at a multiple of eight. Non
printing control characters and meta characters are printed with the conventions
outlined above. If you edit a file which contains characters that have the high order
(parity) bit set, they are displayed as meta characters by EMACS. You will only run
into this when trying to edit files containing binary information.

In addition to the display buffer, several lines of the screen are used for status
information and for displaying parameters entered into EMACS, such as a file name.
One of these lines known as the status line contains the editor name, editor version,
buffer number and name, and file name. Some of the more recently introduced
commands described in this document indicate the version in which they were
introduced, so that you can determine whether or not a particular command is in the
version that you are running. If the buffer has not been modified since the file was
read or written, an ’=’ will be displayed between the buffer and file names. Otherwise,
a ’>’ will appear.

The lines below the status line are used for the time of day display (if time mode is
on), and for EMACS to prompt for parameters for commands. Some commands cause
the buffer display to be erased in order to display other information in place of the
buffer. The word "Continue?" will be displayed at the bottom of the screen when this
happens. Typing ’y’, ’ ’, or return will bring back the buffer display. Typing ’n’ may
allow you to re-execute the command producing the display.

Figure 4-1 shows a typical screen during a EMACS session. The buffer "Main",
number 0, is being used to edit a program test.c. The buffer has been modified since
the last write to the file test.c.

4.2.4 THE TEXT IN THE BUFFER

Each buffer that you edit holds a sequence of characters. Any characters can be
present in an EMACS buffer, including control and meta characters. The only
limitation is on the number of characters that can be on one line in the buffer.
Normally, EMACS treats the buffer just as a sequence of characters.

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-2 Issue 7.00

One difference between EMACS and many editors is that EMACS does not treat
"newline" characters specially. Between each pair of adjacent lines of text in the buffer
is an invisible "newline" character. If the cursor is at the end of one line, it is in front
of the newline character, and deleting a single character will delete the newline,
causing the text in the following line to be joined to the current line. Newlines can be
inserted, deleted, and searched for like any other characters.

Some EMACS commands operate on units of text in the buffer, like words, lines,
sentences, pages, etc. These work on top of the base level which still treats the buffer
as a string of characters.

4.2.5 COMMAND STRUCTURE

Unlike most other editors, EMACS does not have distinct "modes" for inserting text
into the buffer and for entering commands. Thus there are no commands for inserting
text, and no special convention to end a text insertion. Instead, ordinary characters
can be inserted into the buffer at any time simply by typing them, while control and
meta characters are used for editing commands.

Each character that is typed into EMACS is in fact interpreted as a command. All of
the ordinary printing characters insert themselves into the buffer being edited at the
point defined by the cursor. Thus the command invoked when you type the character
’x’ inserts an x into the buffer at the point shown by the cursor. The control and meta
characters are used for various editing functions.

4.2.6 ARGUMENTS AND PARAMETERS

All commands, including the printing characters, take a numeric argument that has
some effect on their interpretation. The default argument given to a command for
which no argument is specified is 1. To specify some other argument to a command,
you can enter escape, followed by a sequence of digits, and then the command. You can
specify a negative value for an argument by entering escape followed by ’-’, followed by
a sequence of digits. Numbers starting with a 0 are interpreted as octal, while
numbers starting with any other digit are decimal. A second way of specifying the
argument is to precede the command by one or more ^U (control-u) characters. Each
^U multiplies the value of the argument by 4.

For most commands, the effect of the argument is to multiply the number of times
that the command is applied. Thus the sequence ^U^Ux inserts 16 x’s into the buffer
at the current location. The sequence ESC13^N moves forward 13 lines in the buffer.

In addition to the numeric argument given to all commands, some commands will
prompt the user for additional character string parameters. The commands that take
parameters and the method of entering parameters are described in the section on file
and buffer commands, Section 4.3.5.

4.3 BASIC EMACS COMMANDS

4.3.1 GENERAL

As noted above, every character you type to EMACS is interpreted as a command.
This section describes a simple set of commands that will be sufficient for most editing
that you do. Subsequent sections describe more advanced commands that are very
useful in certain situations, and other aspects of EMACS.

EMACS has a large number of commands. Most of them have a mnemonic significance
that should be obvious (like ^B for backwards or ^D for delete). Some, unfortunately,
don’t have any obvious meaning. As a general rule, control character commands

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-3

operate on characters and lines, while the corresponding meta character commands
operate on words or sentences.

The user interface of EMACS was designed for touch typists. A deliberate choice was
made to use control and meta characters for commands rather than special keys, such
as the function or "arrow" keys on many terminals, since these keys are different on
every terminal and generally cannot be reached without taking your fingers off of the
home position of the keyboard. Macros can frequently be used to allow EMACS to
respond to the arrow and function keys on a particular terminal, if desired. Typically
the only difficulty faced by an EMACS user in adapting to a new terminal is locating
the escape key, which is unfortunately located differently on every terminal. With a
little practice, you will find that your fingers become adept at locating the keys for all
of the basic commands with little thought and without having to look at the keyboard.

4.3.2 GETTING HELP OR GETTING OUT OF TROUBLE

EMACS has many self-help features. The commands listed in this section are useful to
know about because they can provide help or remedy mistakes.

M-? Explain. This command prompts for a character and prints a brief
explanation of what that character does.

M-w Wall Chart. This command puts a listing of all commands (including user
defined commands), and their help explanations into the current buffer.
This command is a convenient way of producing a "wall chart" of the
commands. The list is inserted into the buffer at the current position, so
that normally one would want to execute it in an empty buffer. Table 4-1
contains a current copy of the wall chart.

^L Refresh. Refresh the display. Occasionally, some error may cause the
display to become garbled. ^L re-creates it from scratch. If you give an
argument to ^L, it is used to specify how many lines will appear on the
screen before the current line. When invoked with an argument, this
command does not re-create the display from scratch.

^G Abort. Typing ^G at any point that EMACS is asking for input will abort
the current command. This applies at any step (specifying arguments,
typing escape, entering parameters that EMACS asks for, etc.). (There
are a couple of exceptions related to advanced editing commands, but
even with these, typing ^G several times will always get you out with
minimal damage). This is a convenient way of aborting anything that you
are not sure that you want to complete, and may not know how you
started.

M-u Undo. This command undoes the effect of the last significant text
modifying command that can be undone. Undo is its own inverse, so
invoking undo twice in a row undoes the result of the undo command.
Significant text modifying commands include all except insertion of
individual characters.

If you give an argument to undo, it is taken as the number of changes to
be undone. Each change undone appears as an independent change to the
file. This allows you to "browse" through recent changes. If, for example,
you had just deleted 10 lines from your file one at a time and typed
M-5M-u, the last 5 lines deleted would reappear. If you decided you had
instead wanted the last 7 lines to reappear, you could then type M-12M-u,
undoing the 5 changes made by your first undo and then 7 more. There is

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-4 Issue 7.00

a limit on the total number of changes that can be undone that depends
somewhat on the complexity of the change.

Almost all commands can be undone, but a few effects of commands
cannot be undone. M-u will not undo the effects of reading or writing
files, nor can it undo anything done by executing UNIX RTR operating
system commands from EMACS. Undo cannot be used to bring back
buffers that may have been inadvertently killed with the ^X^K command
(see Section 4.3.5). Undo can undo all other significant text modifications,
with the exception that when the last significant text modification was a
replace command, only a limited number of replacements can be undone.
If more replacements were done with one command, undo prints a
warning error message and if the user specifies then undoes what it can.

^X^C Quit EMACS. If any buffers have been modified since the last write,
EMACS will ask whether or not to write out each such buffer before
exiting. EMACS will not ask whether or not to save an empty buffer.

BREAK EMACS will not respond to your normal interrupt character (which is
probably used for some EMACS command already), but it will respond if
you hit the BREAK key on your terminal. Break causes EMACS to stop
anything that it was doing at the next convenient point, and displays a
message to you listing some options. When you hit break you can either
continue what you were doing, abort what you were doing, exit from
EMACS, or suspend what you were doing such that you can return to it
later if you wish.

Many commands in EMACS can cause errors to be reported. When an error is
reported, EMACS will display a message at the top of the screen followed by a line of
underscores, ring the terminal bell, and wait for a response. In general, typing a space
or ’y’ will cause EMACS to continue trying to do whatever caused the error, typing ’n’
will cause it to ignore the error, typing ’^G’ will cause it to abort the command causing
the error, and ^Z will cause EMACS to exit. The responses ^G and ^Z are always
handled in the same way, while the interpretation of ’y’ and ’n’ depends on the error.
Generally the message will describe what will be done with these responses for any
error where it makes a difference.

4.3.3 SIMPLE CURSOR MOVEMENT COMMANDS

There are many ways to move the cursor around in the buffer without modifying the
text in the buffer. Most of these use their argument to specify how many times the
movement is to be repeated.

^F,^B Move forward or backward one character. Recall that the end of each line
counts as one character, so that ^F at the end of one line will put you at
the beginning of the next line.

^N,^P Move to next or previous line. EMACS moves to the same character
position in the line below (^N) or above (^P) the current line. Note that if
the buffer contains tab or control characters, the same character position
may display at different screen positions on different lines.

^A,^E Move to the beginning (^A) or end (^E) of the current line of the buffer.
Note that these work on one line of the buffer, not one line of the screen.
If the current line is longer than will fit on one line of the screen display,
these commands may move up or down on the screen to the real
beginning or end of the line in the buffer.

M-<,M-> Move the cursor to the beginning or end of the buffer.

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-5

M-f,M-b Move the cursor forward or backward by one word. In EMACS, words are
delimited by non-alphabetic or non-numeric characters. Backspaces and
underscores are considered legal characters in words.

M-a,M-e Move the cursor to the beginning or end of the current sentence. The end
of a sentence is defined as a punctuation mark followed by one or more
whitespace characters (blanks or newlines). With an argument, these
commands can be used to move forwards or backwards by a specified
number of sentences.

^V,M-v Move to next or previous page. The cursor is moved forward or backward
so that the display will show the text just before or just after the text
now in the window on the screen.

M-g Move the cursor to the line number specified by the argument given to
the command.

4.3.4 SIMPLE TEXT DELETING AND MOVING COMMANDS

Several commands are available to delete text from the buffer. All of these commands
operate on text near the current cursor position. The deletion commands are:

^D,^H Delete forwards or backwards from the cursor. The ^H, or backspace
deletes the character immediately before the cursor. The ^? or rubout, is
a synonym for ^H. The ^D deletes the character on top of the cursor. If
given arguments, these commands delete blocks of text forward or
backward of the current cursor position.

M-d,M-^H Delete words forwards or backwards from the cursor. These two
commands delete words (as defined for M-f and M-b). If the current
cursor position is in the middle of a word, M-d will delete from the cursor
to the end of the word while M-^H will delete everything before the
cursor. M-^? is a synonym for M-^H.

^K (Kill) Delete to the end of this line. If invoked without an argument, ^K
deletes the remaining text on this line (if any). If no text follows the
cursor on the current line, ^K deletes the newline. With an argument of
0, ^K deletes the text before the cursor on the current line. With an
argument of n greater than zero, it deletes n lines forward from the
cursor position. The text from the cursor up to and including the nth
newline is deleted. With an argument less than zero, the deletion is
backwards from the cursor position.

M- (Meta space) The command Meta-space places an invisible mark on the
current cursor position. This mark can be used in subsequent editing.
Each mark is simply a position in the buffer (line number and character
within the line). Thus if you add or delete text in front of a position
where a mark was placed, the mark may not remain on the same
character, but stays on the same position.

EMACS actually maintains 16 different marks, normally allocated as one
per buffer. (Thus if you set marks in different buffers, they are normally
independent.) You can, however, alter this by specifying a mark number
as an argument to Meta-space and other commands that work with
marks. This allows you to mark up to 16 different positions in one buffer.
The command ^@ (Control-@) is a synonym for Meta-space, but cannot be
typed on all keyboards.

^W (Withdraw) The command ’^W’ deletes the text between the current
cursor position and the mark. This is a convenient way to delete a well

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-6 Issue 7.00

defined block of text. If an argument is specified, it is used to select the
mark number. The mark can be either before or after the cursor position
and achieve the same effect.

^Y (Yank back) Insert last killed text. All text that is deleted is saved in a
"kill stack". The kill stack holds the last 16 deletions. There is also a
limit on the total amount of text that can be held in the kill stack, but
you are unlikely to encounter it. The ^Y retrieves the most recently
deleted text. The most frequent use of this command is in moving text
around. The procedure is: kill the text to be moved, move the cursor to
where you want it, and enter ^Y. Another use of ^Y is to undo an
unwanted deletion. The ^Y leaves the mark at the beginning of the
inserted text, and puts the cursor at the end. The ^Y treats its argument
(if any) as a count for the number of copies of the deleted text to bring
back, and not a mark number. The ^Y operates only with the default
mark.

M-y Replace last retrieved text. This command kills the text between the
cursor and the mark and replaces it with the next to last item on the kill
stack. This command can only be used immediately after ^Y, where it
changes text that has just been retrieved. By entering ^Y followed by
some number of M-y’s, any text in the kill stack can be retrieved. If an
argument is given, it is taken as the number of copies to retrieve.

M-p Pickup the region of text. This command picks up the text between the
current position and the mark and puts it in the kill stack, without
changing the buffer. This is useful for duplicating blocks of text in the
buffer. An argument can be used to specify which mark to use.

^X^X (Type control-X twice) Exchange the cursor position and the mark. An
argument can be specified to indicate the mark to exchange with.

4.3.5 SIMPLE FILE AND BUFFER COMMANDS

Commands that access files and buffers must ask for the name of the appropriate file
or buffer. All of these commands (and some of the others) ask for the appropriate
information at the bottom of the screen. You can use some of the simple editing
commands described here, plus a couple of special commands, to edit a file or buffer
name that you enter this way. The commands that you can use for editing are:

^F,^B Move forward or backward one character.

^A,^E Go to beginning or end of line.

^D,^H Delete forward or backward.

^U Multiply the effect of the next command by 4.

^K Kill (erase) the whole line.

^G Abort the command asking for information.

^X Enter the current line from the file at the cursor.

^Y Enter the current file name at the cursor.

^L Redisplay the prompt and the string being entered.

^T Transpose the characters before and after the cursor.

^Q Quote the following character (eliminates the special significance of the
next character and just sticks it literally in the string being typed.)

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-7

return End the string being typed. The whole line is given to whatever command
asked for it, even if the cursor is in the middle of the line when you hit
return.

Most of the file accessing commands are invoked through the ^X command. The ^X is
a prefix for several useful commands, most of which involve file or buffer access. These
commands are invoked by a ^X followed by a second character.

In the commands that ask for filenames, the normal shell conventions for partially
specified names can be used. Any of the following sequences can be used in a filename
and will be substituted properly.

$VARIABLE
Substitutes the value of the environment variable $VARIABLE or nothing
if VARIABLE is not defined. Thus you can use path names like
$HOME/.profile.

* and ? These characters can be used to specify incomplete filenames and will be
expanded. If more than one file matches the name given, then EMACS
will pick only the first one.

~USER This translates into the home directory of the user USER. In addition,
EMACS always translates the special name ~EMACS into an EMACS
library directory. This is a directory where special files needed by EMACS
are stored and where standard macros are stored (in ~EMACS/macros).

’COMMAND’
This causes COMMAND to be run and substitutes its standard output.

With these preliminaries out of the way, here are some of the commands that work
with files and buffers.

^X^R Read file. EMACS will prompt for a file name, which you enter as
described above. When the file name for ^X^R has been entered, EMACS
will read the specified file into the buffer. Hitting return in response to
the prompt will cause EMACS to read from the current file (if any).
EMACS will warn you if you are about to read over a buffer that has
been modified since the last time you wrote it.

Many of the commands in this section, including ^X^R, use their
argument to specify minor variations on the basic action of the command,
rather than specifying a count. In the normal case (with the default
argument of one), ^X^R clears the buffer before reading. If ^X^R is
invoked with an argument that is not 1 or -1 (i.e. ^U^X^R) it does not
clear out the buffer but instead, inserts the file into the buffer at the
current cursor position. If ^X^R is invoked with a negative argument, no
error message is produced if the specified file cannot be read.

If the file contains a line that is too long for EMACS to handle, it will
warn you with an error message. If you answer ’^G’ to the error, it will
stop reading at that point. If you answer ’n’, it will read the rest of the
file, truncating lines that are too long, without further warnings. If you
answer with ’y’ or a space, it will continue reading and warn you again if
a subsequent line is too long.

^X^W Write file. Normally, if the specified file exists and has two or more links
to it, EMACS will ask whether to overwrite the existing copy of the file or
to unlink the specified file name and create a new file in its place, leaving
the contents of the old file (which may be obtained through the other

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-8 Issue 7.00

names it was linked to) unchanged. If EMACS fails or the UNIX RTR
operating system crashes during an attempted write (either ^X^W or
^X^S), the previous contents of the file are saved in a file .EMACS in
your current working directory.

If you do not have write access to the file you are trying to write, EMACS
will ask if it should try to write anyway. If you answer yes, EMACS will
try to write the file by removing the old file and creating a new one. This
is not a security hole, but few other UNIX RTR operating system
programs will write files in this way.

Passing an argument to ^X^W (i.e. ^U^X^W) causes the contents of the
current buffer to be appended to the specified file rather than replacing
it.

^X^S Save buffer. This writes out the buffer to the last file read or written if
the file has been modified. If the buffer was not read from a file, and has
never been written to one, such that there is no file name associated with
the buffer, EMACS will ask for a filename to save the buffer in.

^X^B Change buffer. EMACS allows up to 12 named buffers to be edited
concurrently. Each buffer can hold a different file, and has its own
current cursor position. In EMACS you work with one buffer at a time,
although you can display two buffers on the screen at the same time. The
^X^B command asks for the name of a buffer and makes that buffer the
current buffer.

All of the commands that ask for buffer names accept either the text
name of the buffer, or the buffer number (shown in parentheses after the
editor name on the status line) for a buffer name. The number is
convenient if you don’t like typing long names. EMACS treats two buffer
names specially. For any of the commands that ask for buffer name, if
you enter an empty buffer name by just hitting return in response to the
prompt, EMACS shows you a display of all of your currently defined
buffers, indicating which one is current and which ones have been
modified since they were last written. If you type space or ’y’ in response
to the "Continue" prompt that appears after the display, EMACS will
abort whatever command asked for the buffer name and continue editing.
If you type ’n’ in response to the prompt, EMACS will ask again for the
buffer name, and then complete whatever command asked for the buffer
name. If you type a number in response to the prompt, EMACS will use
the buffer with that number in whatever command asked for a buffer.

If you attempt to create more than 12 buffers, EMACS will indicate this
and ask if you wish to kill one of your existing buffers that has not been
modified. If you type ’y’ or space, it will go ahead and re-use that buffer.
If you type ’n’ it will propose other buffers to be re-used until either you
select one or there are no more, in which case you will get an error
message and the command attempting to create the buffer will abort.

In all cases, if the buffer name "..." is entered, a new, empty buffer with a
unique name is created.

^X^F Find file. This command prompts for a file name and switches to a buffer
that holds the specified file. If the specified file has been read into a
buffer, the effect of find file is to change to that buffer. If no buffer holds
the specified file, the effect of find file is to create a new buffer and read

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-9

the specified file into it. Find file is a convenient way to switch between
editing several files. If ^X^F is invoked with a negative argument, no
error message is produced if the specified file cannot be found. If it is
given an argument >1, it will automatically read in a fresh copy of the
file. If it is given a negative argument, it will not complain if the specified
file doesn’t exist, but will just create an empty buffer with that name.

^X^K Kill Buffer. This command prompts for a buffer name and destroys the
specified buffer. You cannot kill the current buffer this way. Text in the
buffer that is killed is lost and cannot be recovered.

4.3.6 SIMPLE SEARCH AND REPLACE

EMACS provides several commands that search for text in the buffer, and also
commands which allow you to specify global replacements, like change every instance
of "football" to "baseball". The simplest forms of these commands are described here,
along with a couple of miscellaneous commands that are useful. More complex
versions of search and replace are described in Section 4.4.4.

^S,^R Forward and Reverse Search. These commands allow you to look for text
in your buffer. EMACS will prompt at the bottom of the screen with
"Search" or "Reverse Search". In response to the prompt, you can type in
characters, and EMACS will begin to look for the next match for what
you type, going either forwards (^S) or backwards (^R) from the current
position in the buffer. EMACS will show you the text that matches what
you have typed as you type it, by moving the cursor to the text, possibly
moving the display window in the buffer if the text you are looking for
was not visible. As you type in the string to look for, you get immediate
feedback about what EMACS has found. In addition to typing normal
printing characters that become part of the string you are looking for, you
can type some special characters to either edit the string you are looking
for, or control the search in some other way.

^H This deletes the last character of the search string, and will
cause the cursor to go back to whatever matches what is left.

escape Hitting escape stops the search, leaving the cursor on
whatever you last found.

^G This quits from the search and goes back to the point in the
buffer where you started the search from.

return or newline
These both cause a newline to become part of the search
string. The newline is displayed as "^J" (which is the control
character actually used by UNIX RTR operating system to
indicate "newline") in the search string to allow you to see it.
Thus if you type "^Sthe~end<return>of", EMACS will look
for a spot where "the~end" appears at the end of one line
and "of" appears at the start of the next line.

^S or ^R These characters control the search. In general, if you are
going forward, and type ^R, or going backwards and type ^S,
the search changes direction, starting from the last thing
you found. If you are going forward and type ^S or
backwards and type ^R, the search proceeds to the next
occurrence (in whatever direction you were going) of the
search string. If you type ^S or ^R as the very first thing
after starting a search, EMACS takes the last string that
you successfully found with a search and makes it the

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-10 Issue 7.00

current search string. These characters provide a convenient
way to navigate when looking for something that occurs
many times in the buffer.

^Q Typing ^Q "quotes" the next character, making it part of the
search string, ignoring its usual significance. This is a way
to look for strings that contain control characters.

other control characters
Typing any other control character causes the search to stop
at whatever you found, and then executes the command
corresponding to that control character.

This kind of search is called an incremental search in EMACS, because it
shows you what you have matched incrementally as you type it. It is very
easy to learn to use. For incremental search, the search string must
exactly match whatever you are looking for. (There is a more complicated
search available that allows some pattern matching, and is described in
Section 4.4.4.) Incremental search stops, indicating that it fails if you
reach the beginning or end of the buffer.

Normally, search considers uppercase and lowercase letters to be
different, however you can override this with caseless mode.

M-r Query replace. You will be prompted for a From string and a To string.
Each can be edited using the conventions described in the previous
section for editing filenames. In general, Query replace will allow you to
replace all of the strings in your buffer from the current cursor position to
the end of the buffer that match the From string with the To string. In
the To string, the ’&’ character can be used to designate replacement with
the From string. To get a real ’&’, prefix it with a ’´. To get a real ’´, prefix
it with another ’´. If the single character ’%’ is specified as the From
string, the last string searched for (either from ^S or M-r) is used. Note
that you can specify a newline in the To string either by entering it
explicitly as "^Q^J", or by putting the string "\n" in the string where you
want the newline to appear. EMACS then searches for the From string,
positions the cursor in front of it, and prompts you. You can control the
replacement of the item in question by what you type:

<space> or y
Replace this occurrence and move on to the next one.

n or ^? Skip this occurrence and move on to the next.

. Replace this occurrence and exit query replace.

< Go back to the last thing replaced and stop. (useful for
correcting mistakes!)

^G Quit. (Exit query replace without replacing the current
match.)

b Go back to the previous occurrence of the To string. It won’t
find one that you have already replaced!

r Replace the rest without stopping to ask after each, and
show the result of the replacement after each.

R Replace the rest silently. (that is, don’t show the result after
each replacement.)

<ESCAPE> Causes EMACS to ask for a new string to replace the To

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-11

string with with. The current occurrence will be replaced
with what you type, and EMACS will go on to the next
occurrence.

Normally, query replace will show all occurrences of the search string.
With an argument greater than 1 (that is, ^UM-r), it behaves like the
substitute command of the ed editor, looking at only the first match of the
From string on each line. Query replace exits when the From string is no
longer matched. ’?’ prints a summary of the options. As with incremental
search, the From string must match exactly to something in the buffer.
There is a more advanced form of query replace that allows pattern
matching and is described in Section 4.4.4.

4.4 ADVANCED EDITING COMMANDS

4.4.1 GENERAL

The commands described in the previous section are sufficient to allow a user to
perform most editing tasks efficiently. The commands in this section for the most part
cover special situations, like inserting control characters into files, or provide more
efficient ways to do things in certain situations.

4.4.2 INSERTING ODD CHARACTERS

Because EMACS uses control and escape characters for commands, you cannot
directly insert them into the buffer by typing them. The following three commands are
useful for the occasional need to get such characters into a buffer.

^Q Quote the next character(s). The ^Q accepts one or more characters (the
number of characters specified by its argument) from the terminal and
inserts them "blindly" into the buffer without interpretation. Only the
newline (line feed) character is interpreted. EMACS strips the parity bit
from all characters read from the terminal, so all characters inserted this
way have zero parity.

M-q Quote characters and turn on parity bit. This acts just like ^Q, however,
it turns on the parity bit in the character before inserting. Characters
inserted this way will be displayed as meta characters by EMACS.

M-\ Convert the argument to a character and insert into the buffer. This
command takes its argument and converts it to a character and inserts it.
This is occasionally useful for inserting odd characters for which the
ASCII code is known.

4.4.3 COMMANDS RELATED TO WINDOWS

EMACS provides a way to display two buffers on the screen at the same time. When
this is done, the screen is split vertically, and one buffer is displayed in the top half
and one in the bottom half. The status line will show status of the current buffer.

When EMACS displays two buffers like this, only the one that is the current buffer is
actively updated. The display for the other just sits on the screen undisturbed until
you return to that buffer. You can have the same buffer displayed in both windows,
however, note that the current position is associated with a buffer, not a window, thus
if you move the current position in the lower window, when you return to the upper
window, the cursor will immediately move to wherever you were in the lower window.
If you have different buffers in the two windows, the current positions in both buffers
are independent, as they are with any two buffers.

^X2 Enter two window mode. EMACS will ask for a buffer to show in the

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-12 Issue 7.00

second window. The current buffer becomes the top window, while the
buffer that you type in response to the prompt goes in the lower window
and becomes the current buffer.

^X^^ Grow window. Makes the current window grow by the number of lines
specified by the argument to ^X^^. You can use a negative argument to
cause the current window to shrink.

You can also use this command to grow or shrink the buffer display with
only one window on the screen. This can be useful in avoiding long delays
when working from a low speed terminal port.

^X1 Return to one window. The current window grows to fill the screen.

^X^O Switch windows. Make the dormant window current and the current
window dormant.

4.4.4 ADVANCED SEARCH AND REPLACE COMMANDS

The simple incremental versions of search and replace described above require that
you match what you are looking for exactly. The commands described here allow
pattern matching of regular expressions, like those used by the ed editor.

The description of regular expressions is too complex to reproduce here. Refer to the
manual pages for ed(1) for a brief description. EMACS provides some additional
special sequences for regular expressions. The character sequences "\<" and "\>" can
be used to match the beginning and end of words. Thus the string \<the\> will match
any occurrence of the word "the", but not any word containing the sequence of letters
"the", such as "other". Note also that EMACS allows you to specify a newline as one of
the characters to be matched anywhere in the expression. Specify a newline as "\n"
either by itself or as an alternative in a set of characters (that is, [a-z\n]). Neither the
special symbol "." nor a negated set of character (that is, [^a-z]) will match a newline
to avoid unexpected results of expressions such as ".*".

In addition, a set of alternatives can be specified by expressions of the form:
\(eps1\|exp2\|exp3\). This expression matches the text matched by exp1, exp2, or
exp3, and saves it for later reference as with other expressions enclosed in
parentheses. Any number of alternatives may be specified. At present, ’*’, ’+’, and
\{n,m\} can not be used after a set of alternatives to specify multiple matches. (Note
that you can specify multiple copies of text matching one of the alternatives with an
expression of the form: \(exp1\|exp2\|exp3\)\1*.

In constructing regular expressions, it is important to remember that in order to avoid
the special significance of a character like ’.’ or ’*’, you must prefix it with a backslash
’´. If you must have control characters in regular expressions, you can quote them for
EMACS by typing ^Q before the control character.

Constructing regular expressions is tricky, and constructing ones that will match
efficiently can be very difficult. Some things to keep in mind are that expressions
beginning with a normal text character are generally matched much more efficiently
than any other sort. An expression such as [a-c] will be matched much more efficiently
than the equivalent form \(a\|b\|c\). Expressions matching an indefinite number of
alternatives by using "*" or "+" are probably the slowest to execute, particularly when
the expression is likely to match a large number of characters and is not the last
expression being matched (that is, .*x). You should be especially careful of expressions
that match an indefinite number of characters including newlines (for example, [a-z
\n]*), as these can trigger a very long search that extends over many lines.

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-13

M-^S Regular Expression Search. This will prompt for a regular expression to
search for. You can edit the expression like editing filenames. Hitting
return in response to the prompt will search for the last thing you
searched for with M-^S, ^S, or ^R.

You can search forward or backward, either ending at the beginning or
end of buffer, or wrapping around (like ed) depending on the argument
given to the search command.

1 (default) Search forward, wrapping from the end of the
buffer to the beginning, and failing only if the buffer
contains no match for the given string.

-1 Search backwards, wrapping around from the beginning to
end of the buffer.

> 1 Search forwards, stopping at the end of the buffer.

< -1 Search backwards, stopping at the beginning of the buffer.

0 Just search the current line. The search will find the
indicated expression anywhere on the current line and fail
otherwise.

In all cases, you can have EMACS repeat the search, looking for the next
(or previous) occurrence of the search string by typing ^S or ^R
immediately after the regular expression search.

M-^R Regular expression query replace. This is just like query replace, except
that a regular expression is allowed in the From string. You may also use
the special character sequence \<digit> in the To string, to specify that
the characters matched by the nth subexpression (delimited by nd \)) are
to be used in the replacement string.

4.4.5 MACROS, KEYBOARD MACROS, AND INPUT FILES

EMACS provides a number of ways for a user to construct editor programs from
sequences of commands. The macro programming facility is the best way to construct
substantial programs. The commands listed here deal with two other ways of saving a
sequence of EMACS commands for later use, input files and keyboard macros, and
with the commands that load and invoke "full" macros into EMACS for your use.

^X^I Redirect input. This command directs EMACS to take input from a file.
The file is assumed to contain EMACS commands, and can be created by
editing with EMACS, using ^Q to enter control and escape characters.
You can also create an input file by using the commands to create
keyboard macros described below, and then saving the resulting keyboard
macro file.

This command can be used to perform a series of commands on the
current buffer, or to set up a standard set of initializations. Thus the file
should contain exactly what you would type from the keyboard to perform
whatever task you wish to perform. Note that if the file contains only
printable ASCII text, tabs, and newlines, ^X^I will effectively read the
file into the buffer at the current location. Note, however, that this is very
slow, and much better done with ^X^R.

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-14 Issue 7.00

A file suitable for executing with ^X^I is known as a keyboard macro,
because it is interpreted just as if it had been typed from the keyboard.
The following commands provide a sensible way to create and execute
keyboard macros.

^X(Begin Keyboard Macro. This command starts remembering the
keystrokes you enter so that they can later be executed as a keyboard
macro.

^X) End Keyboard Macro. This command stops remembering keystrokes for a
keyboard macro.

^XE Execute Keyboard Macro. This command retrieves and executes the
keystrokes typed between ^X(and ^X). EMACS executes them just like
they came from your terminal. Keyboard macros are saved in the file
.emacs_kbd in your home directory. These are saved between sessions, so
that ^XE is in fact the same as invoking ^X^I (Input file) and giving
$HOME/.emacs_kbd as the file name to execute. Note again that you can
use ^X(and ^X) to create a keyboard macro, save it for later use by
moving the file $HOME/.emacs_kbd to another file, and then invoke it by
invoking ^X^I with the name of the file you saved.

^Xd Define macros. This command treats the current buffer as definitions of
new macro commands. The commands are defined and become available
for use. For a complete description, consult the macro programming
manual. Note that you should not use ^Xd with the file created from a
keyboard macro.

^X^L Load macros. This command allows you to load "full" macro definitions
from a file. It is described in the macro programming manual, however
even if you do not program your own macros, you may be interested in
using those defined by others and will use ^X^L to load the resulting
files. On some systems on which EMACS is installed, there is a library
directory of macros available for general use in ~EMACS/macros, and the
file ~EMACS/macros/CATALOG gives a catalog to the available macros.

M-x Execute Macro command. This command asks for a macro name and tries
to execute it. If there is no macro currently loaded with the name you
give and if autoload mode is on, EMACS will try to load the file with the
name of the macro from the directory $EMACS_LIB (if this environment
variable is defined) or in the directory ~EMACS/macros if it hasn’t been
found yet. If the macro cannot be found, an error results.

^Z Exit level. In an EMACS editing session, you may wind up in a nested
level of EMACS. This can happen either by typing "break", and
responding "y" to suspend whatever you were doing and invoke a new
command interpreter, or by invoking a macro that uses the recursive edit
command to allow you to edit something from inside of a macro. The ^Z
exits your current level of EMACS, returning to whatever called it.

The ^Z command performs a function similar to ^X^C. Ordinarily, both
will exit from EMACS, however if you have hit break or type ^Z while
executing a macro that allows you to edit the buffer and return to the
macro, ^Z will return to the break or the macro instead of exiting.

4.4.6 COMMANDS THAT ESCAPE TO THE UNIX RTR OPERATING SYSTEM

There are several commands that interact with UNIX RTR operating system, allowing
you to runUNIX RTR operating system commands or send mail from inside of
EMACS.

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-15

M-!,M-$ UNIX RTR operating system escape. These two commands implement
five different ways to run UNIX RTR operating system commands from
EMACS. In all cases, the commands prompt for the name of a UNIX RTR
operating system command to be run and run it. The command is run
through your normal shell as indicated by $SHELL. If you enter the
special command name "sh", it runs your normal shell instead of "sh". To
facilitate writing programs that interact with EMACS, the environment
variable "filename" is set to the name of the current file in EMACS when
the command is run. The following summarizes the various flavors:

M-! Run the command, suspending EMACS while it runs.

^UM-! Run the command and feed it the contents of your current
buffer as standard input. When the buffer is exhausted, the
command will see an end of file.

M-$ Run the command with standard input from your terminal
but standard output and standard error are captured in the
buffer ".exec", which is created if it doesn’t already exist. (If
it does exist, the command output replaces its current
contents). Normally, output from the command is also
displayed on the terminal as it is produced, but this can be
overridden via the usilent or noecho modes described in
Section 4.5.3. This is useful for saving a copy of the error
messages produced by a C compilation of a file being edited,
for example. The file name of the .exec buffer is set to the
command line that produced it. This can be useful if you
want to re-execute the same command, as you can make
.exec your current buffer, enter M-$, and enter ^Y followed
by newline as the command line. ^Y gets the old command
line back, and newline will execute it.

^UM-$ Run the command and append the output to the buffer
".exec". This is just like the above except that the .exec
buffer is not cleared and the output from the command is
appended to it. It also inserts the command line into the
.exec buffer when the command is run.

^X^D Change Working Directory. This command directs EMACS to change the
current working directory. Note that if you have buffers with filenames
that are relative pathnames (not starting with ’/’), change the working
directory, and then save one of these buffers, the buffer will save into a
different file because of the change in working directory.

M-^M Mail. This command takes the current buffer as UNIX RTR operating
system mail, and sends it. The buffer must contain at least one line
starting To: , which specifies the recipients of the mail. Each recipient is
delimited by a space. Any number of recipients may be listed in a single
line, however to improve readability, additional To: or Cc: lines may be
used in specifying lists of recipients. Any errors encountered by mail are
printed. If the environment variable $MAILER is set, then it is taken as
the name of the command to run to send the mail. Otherwise, EMACS
runs "mail".

4.4.7 MISCELLANEOUS COMMANDS

The remaining commands handle special situations that occur once in a while.

^O Open up a line. This command creates one or more empty lines at the

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-16 Issue 7.00

current cursor position. This is useful for inserting text in the middle of
the buffer, while minimizing the amount of screen refresh needed.

^T Transpose the next two characters. The cursor moves forward one
character for each transposition, such that giving ^T a count as an
argument causes the character at the cursor to be dragged forward
through the text.

^X^T Transmit text to another buffer. This command sends the text between
the mark and the current cursor position in the current buffer to another
buffer. EMACS prompts for the name of the other buffer, and the text is
inserted into that buffer at the current cursor position for that buffer. The
current buffer remains unchanged. If an argument is given, it selects the
mark to use. If the target buffer has a sub-process running under it, then
the region is also sent to that process and is always put at the end of the
buffer. (See the description of M-$ for more information.)

M-s This command displays some statistics about your editing session, such
as how many characters EMACS has sent to you and how many
characters you have typed. The information is normally not of much
interest.

^X= Status. Displays status information (current line, number of lines in
buffer, current character position, number of characters in buffer, etc.).

M-/ Begin comment. This command begins a C program comment by moving
to the appropriate column (specified by comcol mode) and putting a /* in
the buffer. (If the cursor is in the first column, the comment is not
indented). The next newline will close the comment and automatically
append a */. If fill mode is on and the comment line is wrapped onto the
next line as a result, the next line will begin with " * ", and the comment
will stay open until you close it with a newline.

M-_ Underline word. This command underlines the following word of text
using backspaces and underscores. This can be used to generate
underlined text that will be displayed properly by most printers and
formatting software.

^C Capitalize. This command capitalizes the letter under the cursor and
moves the cursor forward one position. Lowercase alphabetic characters
are converted to uppercase, while other letters are unchanged.

M-c Capitalize word. The letter under the cursor is capitalized, and the cursor
is moved to the beginning of the next word.

M-l Lowercase letter. The letter under the cursor is converted to lowercase
and the cursor is moved to the right.

M-~ Unmodify Buffer. This command causes a buffer to be marked as being
unmodified even if it has been modified since the last write. Doing this
will avoid having EMACS ask whether or not to write the buffer when
you exit if you know that you do not want to rewrite the buffer. With an
argument greater than 1 (that is, ^UM-~) this command marks the buffer
as modified.

M-^L Redisplay top. Redisplay the window with the current line at the top.
This is useful for viewing the lines that follow the current line. Note that
this does not re-create the entire display, as does ^L, so it will not
necessarily clear up a garbled screen.

M-’’ Auto Fill Buffer. This command re-adjusts the lines in the buffer so that
each line contains 72 or fewer characters. The adjustment is done by

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-17

moving words from one line to another. The nroff or mm command lines
and blank lines are preserved as is. The adjustments made generally do
not change how the file would look after being run through nroff/troff
unless the text contains tables, displays, or other fixed format text. Lines
are broken at whitespace (space or tab) characters.

If you give M-’’ an argument other than 1, it readjusts only that part of
the buffer between the cursor and mark.

M-: Remap character. The command M-: allows you to remap character
commands. It prompts for a character sequence (a single character or a
meta or ^X sequence) and a command (also a specified by a character
sequence) to put on that character. This allows you to reconfigure EMACS
to your liking. You can remap any character you like, including characters
like ^U, ^X, or escape, however, to re-map escape or ^X or to map other
characters to these "commands", you must invoke M-: with an argument
of -1 (M––M-:). With a negative argument, M-: will ask for only single
characters for the sequences to map. The command sequence is always
interpreted with the default bindings (as documented in this memo), and
not with the bindings set up with earlier M-: commands. Thus M-:^A^B
followed by M-:^B^A will swap the ^A and ^B commands, since the
command ^A in the second M-: command refers to the default meaning of
^A, not that established by the first M-: command. M-: also changes the
behavior of the control characters used to edit filenames and other string
parameters, but does not change the behavior of some of the characters
that have special meaning in response to prompts issued by various
commands, such as the responses to query replace.

With an argument of 4 (^UM-:), this command asks for a character and a
macro name to assign to that character. This allows you to bind macro
commands to characters by their names instead of their current character
binding.

With an argument of 0 (M-0M-:), this command resets all of the keyboard
character bindings to their default values. This may be useful in
recovering from trouble.

With an argument of -1 (M––M-:), the character sequence and command
are single characters, allowing escape and ^X to be remapped to other
commands, and allowing other single characters to assume their function.
Note that ^X and escape "commands" can only be attached to single
characters.

In all cases, the bindings established with this command and through
defining macros apply to both character commands typed from the
keyboard and to characters in keyboard macros and initialization files.
They do not apply to the character commands executed in the body of
"full" macros.

See Section 4.4.5 and the macro command manual for further information
on bindings.

^X^M Set Mode. This command can be used to set parameters to customize the
behavior of EMACS. For more information on modes, see Section 4.5.

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-18 Issue 7.00

4.5 MODES

4.5.1 GENERAL

EMACS has a variety of parameters that can be changed from commands entered in
the terminal. These are referred to as "modes" in this document and in the messages
printed by EMACS. There are two types of modes: on/off modes and integer modes.
The ’^X^M’ command can be used to display or set these parameters. The ’^X^M’ will
prompt for the name of the mode to set. If you enter a return in response to the
prompt, the current mode settings are displayed. Normally, EMACS will display the
value of each integer mode, and the name of each on/off mode that is currently on. If
you enter return in response to ’^U^X^M’, EMACS will also display the names of the
on/off that are currently off, indicating for each mode whether it is on or off.

Modes are set by giving the name of the mode to set in response to ’^X^M’. If an on/off
mode is given, it is turned on if no argument is given to ’^X^M’, and turns it off if an
argument other than 1 is specified. (Thus ’^X^M’ turns on, ’^U^X^M’ turns off). For
an integer mode, the mode is set to the value of the argument.

The modes and their types are listed in the following sections, along with their default
values. For ON/OFF modes, the default is highlighted . The modes are grouped into 4
broad categories:

• Display modes change how the information in the buffer is displayed, but have no
effect on its content.

• Interface modes change the command interface to EMACS in minor ways, but
don’t really change any of the behavior of the commands.

• Command modes change the way in which some of the commands work.

• Terminal modes change the way that EMACS uses the terminal, and exist mainly
to get around special problems caused by certain kinds of terminals.

4.5.2 DISPLAY MODES (PARAMETERS)

lnumb Line Number Mode (ON/off) This mode causes the current line
number to display at the left of each line.

lnowid line number width (INTEGER=4)
This parameter specifies how many character positions are
reserved for the line number when in line number mode.

height Display height (INTEGER=<screen_size-4>)
This parameter dictates how many lines from the buffer will be
displayed on the screen. It is automatically set based on the
terminal type whenever the terminal type is set, and is changed by
the one window and two window commands. This mode and width
mode can be set explicitly to restrict the display to a subset of the
entire terminal screen, or can be used to allow you to use a
terminal with a settable screen size for which EMACS does not
have the right size built in.

width Screen Width (INTEGER = <set based on terminal type>)
This mode specifies the width of the display screen.

tabstop Tabstop interval (INTEGER=8)
This mode is the number of characters per tab that are displayed.
A deeply indented C program may be more readable if tabstop is
set to something smaller than the default value of 8.

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-19

backspace Display of backspaces (on/OFF).
Turning on backspace mode causes backspace characters (^H) to
display as moving back one column rather than as a ^H. This is
very useful for viewing nroff output or manual pages, but editing
the resulting text can be a bit tricky, because it is impossible to
tell whether the character under the cursor is the one being
displayed, one that has been overprinted, or a backspace.
Backspace mode is set on automatically if your terminal can
display underlined text.

time Display time (on/OFF)
When time mode is on, EMACS will display the time of day below
the mode line (the one that says EMACS and the buffer name).
The time is updated every time a character is read. Using time
mode when entering lots of text is expensive in processor cycles.

display_percent
Display cursor as percent of buffer (on/OFF)
If set, EMACS will display the percentage of the current buffer
beyond the current cursor position on the mode line.

7bit_ascii Display only 7-bit characters (on/OFF). This mode controls how
characters with the high order bit set are displayed. With this
mode off, they are displayed as "M-" followed by the character.
With this mode ON, they are displayed as highlighted (underlined)
characters. This mode is most useful for editing files used with
personal computer word processing systems which use the high
order bit for formatting control.

leftmargin Leftmost displayed column (INT=0). In picture mode (See Section
4.5.4), EMACS automatically scrolls the window left or right to
keep the cursor on the screen. This mode allows you to alter this
behavior. The value of leftmargin is the left most displayed
column. Setting it will cause the screen to scroll left or right. In all
cases, if the cursor wanders out of the window, EMACS will pick
its own leftmargin to keep it on the screen.

4.5.3 INTERFACE MODES

save Automatic buffer saving (on/OFF)
If save mode is on, EMACS will automatically write the current
buffer after savetype characters have been entered since the last
save. EMACS will also automatically save the current buffer
before any command that changes buffers or runs a UNIX RTR
operating system command, such as ^X^B, ^X^F, ^X^O, ^X^D,
M-!, and M-$. This mode reduces the chance of disaster in the
event of a crash, but may delay editing by causing a lot of extra
writing to the file.

savetype Save type ahead (INTEGER=256)
If save mode is on, this is the number of keystrokes between saves.

verbose Verbose prompting (ON/off)
When verbose mode is on, EMACS will prompt for more input
when ^X, ^Q, escape, or ^U are entered. This makes it easier to
keep track of where you are. Verbose mode also effects some error
messages. In general turning verbose mode off causes some error
conditions (such as using one of the commands that uses the mark
when the mark has not been set) to be handled by supplying a
default answer, rather than printing an error message.

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-20 Issue 7.00

keepscroll Lines kept when paging (INTEGER=0)
This parameter specifies how many lines are to be preserved on
the screen when forward page or backward page is invoked.

smoothscroll
Smoothscrolling (ON/off)
When set on, EMACS will try to scroll text onto the screen
smoothly, one line at a time when moving forwards or backwards
by less than one screen full or when inserting or deleting lines.
With this mode off, any insertion, deletion, or screen movement is
done all at once. The display will be somewhat slower with
smoothscroll on, but may be easier to read when scrolling forward
through text.

caseless Ignore case in searches (on/OFF)
This mode causes either case characters in the search string to
match either case in the buffer on all searches and query replace.

mailtype Check mail interval (INT=100)
This parameter determines the number of input characters
between checks of your mailbox ($MAIL). When EMACS discovers
something in your mailbox, a warning is displayed at the bottom of
the screen.

end_newline
Behavior of ^N at end of buffer (on/OFF)
This parameter determines whether executing the ^N command in
the last line of the buffer adds a new line to the buffer (mode ON)
or whether it signals an error (mode OFF).

usilent Silent UNIX RTR operating system commands (on/OFF)
If set, this parameter causes EMACS not to display the command
name or output for M-$. This is useful for invoking a UNIX RTR
operating system command in a macro and capturing the output
without disturbing the display.

noecho Don’t echo M-$ output (on/OFF)
If set, EMACS will not echo the output of commands run with M-$
to the terminal. The difference between noecho and usilent is that
usilent isolates commands run from EMACS from the terminal
completely, so that EMACS does not clear the screen and does not
have to redraw it when the command exits. noecho has no effect at
all on commands run via M-!, but does eliminate the display of
output from M-$. It is most useful when you wish to run
something that will produce lots of output, capturing the output in
.exec.

eofnl Write newline at end of file. (ON/off)
This mode when on causes EMACS to append a newline character
to any file written by EMACS from a buffer that does not end in a
newline. EMACS allows you to create files that do not end in
newline. Unfortunately, many UNIX RTR operating system tools
get confused when reading such a file. This mode is on by default,
and prevents you from writing a file that will cause troubles. For
editing files which you do not want to end in a newline, turn this
mode off.

savelink Preserve links on write (on/OFF)
Turning this mode on will cause EMACS to automatically write

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-21

into the existing file when writing to a file with multiple links,
instead of asking the user what to do in this situation.

search_newline
Newline ends search (on/OFF)
Turning this mode on causes incremental search to stop if a
newline or carriage return is typed from the terminal.

autoload Automatic macro loading (ON/off)
This mode controls the automatic loading of macro packages when
an undefined macro is called. If autoload mode is on and an
undefined macro by the name of <name> is called, EMACS will
first attempt to load $EMACS_LIB/<name> (resolving the
environment variable $EMACS_LIB), and then try to load
~EMACS/macros/<name>. If either of these files exists and defines
a macro called <name>, that macro will be called and execution
will continue. Otherwise, an error message is produced. This
allows macros to be loaded incrementally, only when needed. With
the mode off, any attempt to call an undefined macro results in an
error.

4.5.4 COMMAND MODES

fill Automatic line filling (ON/off)
If this mode is on, EMACS will automatically move to the next line
whenever the cursor moves to the end of the line, breaking the line
at a word boundary (programmable by changing the character
tables). This is very useful for entering text, as no newlines need
be entered in the middle of the text.

fillcol Right margin for fill mode (INTEGER=72)
This is the character position beyond which fill mode will cause
the line to be broken.

c C source indentation (INTEGER=0)
This mode controls automatic indentation. When set to 0 or 4,
indentation is off and each new line will be started at the left-hand
edge. When this mode is set to 1, each line will be intended with
the same number of tabs as the one before it, adjusted for the
number of opening and closing braces in the previous line. If, in
addition, the file being edited has a name that ends in ".h", or ".c"
(conventionally indicating a C program), the indentation of each
line is adjusted for labels and case declarations (which are
indented one level less) and preprocessor statements (which
always start at the beginning of a line). The indentation of a line
may be adjusted whenever any of the characters ’:’, ’#’, or ’}’ are
typed to make it conform to the normal rules for C program
indentation, allowing you to enter C source without adjusting
indentation. The special behaviors for C source can be forced to
occur in other files (not ending in .c or .h) by setting C mode to 2.

The C mode is useful both for text, where it can be used to
maintain indentation in indented paragraphs, and source, where it
allows you to enter text without indenting it and usually get a
properly indented result.

comcol Comment Column (INTEGER=40)
This is the column in which comments entered via M-/ begin.

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-22 Issue 7.00

rigid_newline
Rigidly insert newlines (on/OFF)
This mode causes any newline to insert a newline into the file.
With this mode off (the default), a newline will not insert anything
if the following line is empty, but will simply move to the next line.

readonly Read only buffer (on/OFF)
If this mode is turned on, saving the current buffer is disabled.
The ^X^S will complain with an error message; autosaving will
not take place, and EMACS will not complain if you try to exit
without writing buffers.

picture Tailor editing for two dimensional displays (on/OFF)
If set, EMACS treats the buffer as an "electronic blackboard",
rather than the exact contents of a UNIX RTR operating system
file. The display shows a rectangular region of the blackboard
through a window. Characters beyond the right margin are not
displayed, but are indicated by a ’!’ in the right margin. The
window is moved left or right to keep the cursor in the window.
The leftmargin mode gives you some explicit control over the
window, but in general it is self adjusting. If the window is not at
the left edge of the blackboard, then the character offset of the left
edge of the display is given on the mode line, in front of the editor
name.

Picture mode changes the behavior of several basic commands to
be more suitable for two dimensional editing.

^N/^P These move to the same column in the target line,
extending the target line with spaces if necessary.

^F/^B These will not move off the current line. The ^B will
stick at the left margin, while ^F will continue to
extend the line to the right if necessary.

^W/^Y These treat the region to be deleted as a rectangle,
bounded by the mark and the cursor position at the
corners. All text in the rectangle defined by these
positions is killed by ^W. The ^Y brings text back in
the same way. All text deleting commands behave like
^W, in that the start and end positions of the text
region to be deleted are taken as corners of a
rectangle. When the text region being deleted is all on
one line, behavior is identical to normal EMACS,
however, deletion across line boundaries via
commands like M-d may not do anything sensible.

Picture mode is probably most useful with nodelete mode, notabs
mode, and overwrite mode all set. You can use picture mode
without the others set, but the presence of tabs or control
characters in the buffer may give unexpected results when you
navigate in the file. This mode is particularly useful for editing
fixed format tables and picture images of "typewriter art".

overwrite Overwrite instead of insert (on/OFF)
In overwrite mode, text entered will overwrite text already there.
Text entered when the cursor is at the end of a line will be
inserted as before. Overwrite mode may be more natural for some
people when making corrections.

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-23

nodelete Don’t close deletions (on/OFF)
With this mode set, text deleted in the file is not closed up but
instead is overwritten with spaces. After any deletion, the cursor is
moved to the first character of the region deleted. nodelete mode
should probably be part of overwrite mode, however overwrite mode
considerably pre-dated it and was left alone for upward
compatibility.

notabs Eliminate tabs (on/OFF)
With this mode set, EMACS does not display tab characters in the
buffer as whitespace, but instead shows them as ^I (control-i),
which is the ASCII code for a tab. When you enter a tab by typing
^I or tab, EMACS converts it to the proper number of spaces to
come up to the next tabstop column. EMACS does not convert tabs
already in the file, though there are macros that do this.

The main use of this mode is in creating and editing fixed format
information in picture mode, though it can also be useful in
showing you where tabs are in your buffer.

4.5.5 TERMINAL MODES

nobell No Bell (on/OFF)
Ordinarily, unexpected conditions, such as errors or quitting out of
commands, cause the terminal bell to ring. Turning on nobell mode
prevents EMACS from ringing the terminal bell.

tspeed Terminal Speed (INT=<terminal dependent>)
This parameter is the speed of your terminal in milliseconds per
character. This parameter is set whenever you enter EMACS and
is used in determining how to update the display most efficiently.

controlify Controlify mode (on/OFF)
When on, this mode causes a particular character (normally ^^,
but settable to another character with the ctl_char described
below), to act as a prefix specifying that the next character is to be
interpreted as a control character. This mapping takes place at
any time, not just when entering commands. Thus the sequence
^X^^s will be mapped into ^X^S, and cause the save command to
be invoked. The sequence ^^q^^m typed in response to a request
for a file name will be mapped into ^Q^M, which will be
interpreted as asking for a file name of ^M. Controlify mode is
primarily intended to allow you to enter characters which cannot
be sent transparently from your terminal to EMACS. The most
frequent examples are ^S and ^Q, which cannot be sent by some
terminals and some local area networks. By setting controlify
mode, you can send these characters with ^^s and ^^q.

ctl_char Prefix character for controlify (INT=30)
This parameter sets the value of the character used when in
controlify mode to indicate that the next keystroke should be
interpreted as a control character. It is the ASCII value of the
character to be used.

flow_lim Flow Control Limit (INT=0)
This parameter enables the use of xon/xoff flow control during
output to control the rate of output to the terminal. EMACS
normally turns xon/xoff flow control off to allow ^S and ^Q to be
passed to EMACS to be used in specifying commands. If flow_lim
is non-zero, then whenever more than flow_lim characters are sent

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-24 Issue 7.00

to the terminal at once, xon/xoff flow control will be temporarily
enabled to allow the terminal to send ^S to request that the UNIX
RTR operating system stop output. The xon/xoff flow control is
disabled when output is complete. The only effect you will notice is
that you cannot type ahead while EMACS is updating the screen.
Normally, EMACS supplies sufficient padding to allow it to run
without xon/xoff flow control, however for some terminals at high
speeds, xon/xoff flow control is required. In this case only, set
flow_lim to a number somewhat larger than the terminal’s
character buffer (typically 32, 64, or 128). In some cases it may be
desirable to set up the terminal to always use ^S/^Q for flow
control. This can be done by setting flow_lim to -1 (escape ’-’ ^X^M
flow_lim). If you do this, you will not be able to type ^S or ^Q from
the keyboard and must rebind them or use controlify mode to send
them.

no_break Suppress Breaks (on/OFF)
Setting this mode disables the special handling of the break key to
interrupt commands in progress. It may be useful for noisy lines
that tend to generate breaks.

4.5.6 SPECIFYING DEFAULT MODES FOR A FILE

You can specify the modes to be used while editing a particular file by putting the
string "EMACS_MODES: " somewhere in the first 10 lines of the file. The text on the
same line following EMACS_MODES: will be taken as names of modes to set on or off.
A mode name preceded by ’!’ will be set off, while mode names just listed will be set
on. If ’=’ immediately follows a mode name, then the characters immediately following
the ’=’ will be taken as the value for the mode name. Any text on the line that does not
correspond to a mode name will be ignored. Thus the line:

/* EMACS_MODES: !fill c, comcol=43 */

in a c source file will set c mode on, fill mode off, and set the column for starting
comments to 43. These modes are set whenever the file is read, and whenever you
switch buffers.

4.6 GETTING STARTED

4.6.1 GENERAL

When EMACS is invoked, it does a number of things to set up for your editing session.
These include finding out the type of your terminal, processing an initialization file
that allows you to customize EMACS for your needs, and processing command line
arguments.

4.6.2 TERMINAL TYPE

The 5ESS®-2000 switch EMACS only is supported for VT100* compatible terminals.
The VT100 compatible terminals include the Lucent 5425 and 4425 as well terminal.
Baud rate should not exceed 4800~baud and slow-scroll mode must be turned off.

4.6.3 INITIALIZATION FILE

When you start EMACS, it consults an initialization file that allows you to initialize
the various modes the way that you want them. This file is called ".emacs_init" and
should be put in your home directory. The file is read as a keyboard macro, and thus
should contain exactly what you would type from the terminal in order to set it up.
Thus the file:

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-25

^U^X^Mfill
^X^Mc

sets c mode and unsets fill mode. If you do not have a .emacs_init file, EMACS will
run the standard initialization file for your system, which you can examine by looking
at the file ~EMACS/.emacs_init. It will not run both by default, but you can call for
the default initialization file to be run from your private file by placing
^X^I~EMACS/.emacs_init in your initialization file at the point at which you want the
system initialization to be done. You can also use command line arguments to specify
alternate initialization files as described in Section 4.6.4.

4.6.4 COMMAND LINE ARGUMENTS

EMACS accepts a number of arguments on the command line that effect processing.
These arguments are processed in order until an argument that is not recognized as a
command line option is found. The first such argument is treated as the file to read,
and any subsequent arguments can be accessed by the user using the ^X^A command.
This allows arguments following the file name to be treated in any way desired,
specifying more options or filenames as interpreted by the user. The supported options
are:

-i (init file) EMACS interprets the next argument as the name of an
initialization file to run in addition to the standard initialization file
(Yours or the system’s). The specified file is run after .emacs_init.

.i (init file) EMACS interprets the next argument as the name of an
initialization file to run instead of the standard file. This option must be
the first argument to have this effect.

+n EMACS moves to line n of the specified file after it is read in. This
argument must be the last of the options, immediately prior to the
filename.

<filename> The last argument on the command line should be the name of the file to
be edited. This file (if present) is read into the buffer Main. If no filename
is specified, EMACS puts you in the buffer Main with no associated file.

4.6.5 HELPFUL HINTS

This editor is very easy to use, once you know a few of the basic commands. Here are
some tips for making the best use of EMACS.

1. Learn a few of the basic commands at a time. You can accomplish a lot with just
the basic commands.

2. EMACS tries to be reasonably efficient about the refreshing of the screen. Some
sequences, however, will cause lots of text to be redisplayed. While you can insert
anything into the middle of a buffer by typing it, if you intend to type a lot of
text, it is frequently better to open up some blank space using ^O, type your
changes, and then kill any unneeded blank lines.

3. Use M-? when in doubt about a command. The explanations are brief, but should
be sufficient to tell you what you want to know.

4. Like most editors, EMACS maintains a local buffer, so that changes made do not
go into the file until the next write. Type ^X^S reasonably frequently so as to
avoid being wiped out by machine crashes, editor bugs, or other unpredictable
events. You can set save mode to do this automatically.

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-26 Issue 7.00

5. Because EMACS tries to avoid unnecessary refreshing of the screen, it will get
confused if characters are sent to your terminal from some other program while
running EMACS. This can happen with output from a "background" program, or
with text from a write command from another user. If you suspect that the
display does not correspond to the buffer that you are editing, type ^L to refresh
the screen. After typing ^L, the screen will match the buffer being edited.

4.6.6 LIMITATIONS OF THE EDITOR

There are some limits that you may encounter:

• The maximum length of a line EMACS can handle is 511 characters. If you edit
something that has longer lines, or create longer lines in the process of editing,
EMACS will truncate at 511 characters.

• You can have at most 12 buffers.

• The kill stack contains the 16 most recent deletions, or a total of 256K characters.

• Filenames are limited to 128 characters.

• The undo command will undo only about 10 distinct replacements done in one
replace command.

4.6.7 RECOVERING FROM VARIOUS PROBLEMS

Because EMACS puts your terminal in "raw" mode, it does not respond to interrupt
and quit characters the way that most UNIX RTR operating system programs do. If
something goes wrong with EMACS, you can usually stop it with BREAK (typing ^Z
to exit from EMACS in response to the message). You may have to kill it from another
terminal or log out.

If EMACS runs into internal trouble, or if you kill EMACS or log out while running
EMACS, it will try to save your buffers before terminating. The buffers are saved in
the files emacs0-emacs11 in your home directory. You will get mail describing what
files are there from EMACS after this happens, though if you do not clean up these
files, they will continue to appear in the message each time you hang up on or kill an
EMACS process.

4.7 CONCLUSIONS

The EMACS editor provides an effective means of using a high-speed display terminal
for text editing. EMACS provides a variety of unique features that are very useful in
editing. User reaction indicates that EMACS has improved their productivity, however
there are no quantitative measurements of this effect.

EMACS uses more computing resources than the standard UNIX RTR operating
system editor, however the resources utilized do not appear to be a serious problem.

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-27

1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456
1234567890123456789012345678901212345678901234567890123456

Table 4-1 — EMACS COMMAND SUMMARY

COMMAND DEFINITION
^@ Sets the mark at the cursor position
^A Moves to the beginning of the line
^B Moves back one character
^C Capitalizes the current character
^D Deletes current character
^E Moves to the end of the line
^F Moves forward one character
^G Quits from any command in progress
^H Deletes backward one character
^I Inserts a tab
^J Opens a new line and moves to the beginning

of it if the next line is non-empty, otherwise
moves down one line

^K Kills to end of line (with argument, kills
multiple lines)

^L Refreshes the screen
^M Opens a new line and moves to the beginning

of it if the next line is non-empty, otherwise
moves down one line

^N Moves down one line
^O Opens up a new line
^P Moves up one line
^Q Quotes the next character
^R Starts a reverse search
^S Starts a search
^T Transposes the next two characters
^U Multiplies the argument by 4
^V Moves to the next page
^W Kills the current region (between cursor and

mark)

1 #include <stdio.h>
2 /* EMACS_MODES: c, !fill, comcol=43 */
3
4
5 /* This i s a c program */
6
7 main()
8 {
9 int i;
10 char c;
11
12 for (i = 0;i > 0; i++) {
13 printf("i = %d\n",i); /* print i */
14 }
15 }
16

EMACS 4.8 (0) Main > test.c

Figure 4-1 — EMACS Screen Display

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-28 Issue 7.00

Table 4-1 — EMACS COMMAND SUMMARY (Contd)

COMMAND DEFINITION
^X Is a prefix for more single character

commands,
^Y Restores last killed text (leaves cursor and

mark around it)
^Z Exits one level
^[Makes the next character a meta character
^] Makes a local variable of a macro invocation

the argument to the next command
^^ Causes the last returned result to become

the argument (space) is self-inserting and
check for automatic word wrapping

Is self-inserting
- Is self-inserting unless part of a numeric

argument
. Is self-inserting and check for automatic

word wrapping
0 Is self-inserting unless part of a numeric

argument
1 Is self-inserting unless part of a numeric

argument
2 Is self-inserting unless part of a numeric

argument
3 Is self-inserting unless part of a numeric

argument
4 Is self-inserting unless part of a numeric

argument
5 Is self-inserting unless part of a numeric

argument
6 Is self-inserting unless part of a numeric

argument
7 Is self-inserting unless part of a numeric

argument
8 Is self-inserting unless part of a numeric

argument
9 Is self-inserting unless part of a numeric

argument
: Is self-inserting, and readjusts indentation in

C mode
} Is self-inserting, and readjusts indentation in

C mode
^? Deletes backward one character

M-^H Deletes the last word
M-^L Redisplays with current line at top of page
M-^M Mails the current buffer

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-29

Table 4-1 — EMACS COMMAND SUMMARY (Contd)

COMMAND DEFINITION
M-^Q Returns the next input character (in a

macro)
M-^R Regular expression query replace
M-^S Regular expression search
M-^X Executes argument 0 as a character

command.
M-^] Assigns the result of the next command to a

macro local variable
M- (Meta space) Sets the mark at the cursor

position
M-! Gets and executes a shell command
M-" Auto fills the whole buffer
M-$ Executes a command, saving the output in

buffer .exec
M- - Is self-inserting unless part of a numeric

argument
M-/ Starts a comment
M-0 Is self-inserting unless part of a numeric

argument
M-1 Is self-inserting unless part of a numeric

argument
M-2 Is self-inserting unless part of a numeric

argument
M-3 Is self-inserting unless part of a numeric

argument
M-4 Is self-inserting unless part of a numeric

argument
M-5 Is self-inserting unless part of a numeric

argument
M-6 Is self-inserting unless part of a numeric

argument
M-7 Is self-inserting unless part of a numeric

argument
M-8 Is self-inserting unless part of a numeric

argument
M-9 Is self-inserting unless part of a numeric

argument
M-: Maps a character to a command
M-< Moves to top of file
M-> Moves to bottom of file
M-? Explains the next character
M-E Expands an environment variable and

returns the result on the kill stack
M-X Calls a macro by name

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-30 Issue 7.00

Table 4-1 — EMACS COMMAND SUMMARY (Contd)

COMMAND DEFINITION
M-\ Converts its argument to a character and

inserts it
M-_ Underlines the next word
M-a Moves to beginning of sentence
M-b Moves back one word
M-c Capitalizes the next word
M-d Deletes the next word
M-e Moves to end of sentence
M-f Moves forward one word
M-g Moves to a specific line (its argument)
M-l Converts the next letter to lowercase

M-m Displays active modes
M-p Puts the current region in the kill buffer

without killing it
M-q Quotes the next character and adds the 0200

bit
M-r Starts query replace
M-s Gives EMACS statistics
M-u Undoes the last significant text modification
M-v Moves back one page
M-w Puts a wall chart of explanations in the

buffer
M-x Calls a macro by name
M-y Replaces the last restore(^Y) with the next

text in the kill stack.
M-{ Enters a command sequence (in a macro)
M-} Exits one level
M-~ Marks a buffer as being unmodified (up to

date)
M-^? Deletes the last word

Control-X Commands
^X^A Accesses the argument list to EMACS
^X^B Changes buffers (Change to * lists active

buffers)
^X^C Exits gracefully (after asking whether or not

to save the buffer)
^X^D Changes the working directory
^X^E Calls EMACS recursively taking input from

the terminal
^X^F Edits a file in its own buffer (if file has been

read into a buffer, moves to it)
^X^I Redirects input from a file
^X^K Kills a buffer
^X^L Loads a file full of macro definitions

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-31

Table 4-1 — EMACS COMMAND SUMMARY (Contd)

COMMAND DEFINITION
^X^M Sets mode from argument (prompts for mode

name) and string if necessary
^X^N Changes the buffer or file name
^X^O Switches between windows
^X^Q Returns the character under the cursor (in a

macro)
^X^R Reads a new file
^X^S Saves the buffer in the current file (if

modified)
^X^T Prompts for a buffer name and inserts the

text between the cursor and the mark into
the named buffer.

^X^U Updates the display and delays for a
specified time

^X^V Puts the current version on the kill stack.
^X^W Writes a new or old file
^X^X Exchanges the mark and the cursor
^X^^ Causes the current window to grow by one

line
^X! Begins a case statement (in a macro)
^X# Reads or writes global variables
^X% Exchanges the top of the kill stack with

another item
^X& Compares two strings
^X(Starts a keyboard macro
^X) Ends a keyboard macro
^X+ Causes the next entry to the kill stack to

append to the previous entry
^X- Pops the kill stack
^X1 Exits two-window mode
^X2 Enters two-window mode
^X< Pushes a string from the TTY or macro text

into the kill stack
^X= Gives statistics about the buffer
^X> Duplicates an item on the kill stack
^X@ Prompts the user with a string from the kill

stack and returns the result
^XB Puts the buffer name into the kill stack
^XE Executes the keyboard macro
^XF Puts the file name into the stack
^XL Makes the next character a meta character
^XT Traces the next command
^X^ Enters a "while" loop (in a macro)
^Xd Defines macros from the current buffer
^Xg Moves to a screen position (arg=128*y+x);

EMACS DESCRIPTION 235-700-200
November 1998

Page 4-32 Issue 7.00

Table 4-1 — EMACS COMMAND SUMMARY (Contd)

COMMAND DEFINITION
^Xm Sets mode from argument (prompts for mode

name) and string if necessary
^X| Begins a conditional execution sequence (in a

macro)
^X~ Performs arithmetic or logical operations (in

a macro)

235-700-200
November 1998

EMACS DESCRIPTION

Issue 7.00 Page 4-33

UNIX RTR Operating System Reference Manual

CONTENTS PAGE

5. COMMANDS . 5-1

235-700-200
November 1998

COMMANDS

Issue 7.00 Page 5-i

5. COMMANDS

The Commands describes programs intended to be invoked directly by the user or by
command language procedures, as opposed to subroutines, which are intended to be
called by the user’s program.

This section consists of many independent entries of a page or more each. The name of
the entry appears in the upper corner of the page and is in alphabetical order. Some
entries may describe several routines, commands, etc. In such cases, the entry appears
only once, alphabetized under its “major” name.

235-700-200
November 1998

COMMANDS

Issue 7.00 Page 5-1

NAME

admin — administer logins

SYNOPSIS
admin -a nlogin [-u|p] [-s shell] [-h home]
admin -a nlogin- [-r|R]
admin -d ologin
admin -c ologin
admin -o ologin -n nlogin

DESCRIPTION

The admin command allows craft logins to be added, deleted, and renamed.

The admin command also allows passwords to be added or deleted for
password-protected commands. In addition, it permits any login’s password to
be cleared. Only the super user (root) and the craft administrator (manager)
may invoke this command.

Craft Login Creation

The format for craft login creation is:

admin -a nlogin -u|p [-s shell] [-h home]

where nlogin is the desired new login.

When a new login is created, a new entry is made in the password file with the
desired name. The uid is unique and not within the range of system logins. The
group id is the same for all new creations. This is controlled by the #define
CFGID (10) in the source. The password is cleared. Password aging is set for 2
weeks minimum and 10 weeks maximum. A login directory is created in the
directory specified by the #define of CFTDIR (/unixa/users) in the source. If the
login is for the UNIX operating system use, "-u" must be specified. If the login
is for PDS/MML use, "-p" must be specified. An option login shell and home
directory may also be specified for special applications.

Command Password Creation

The format for command password creation is:

admin -a nlogin- [-r|R]

where nlogin- is the desired new login. This new login must be the name of a
command to be password-protected with a tailing "-" dash. Thus to password
protect the command "sh", the nlogin- should be "sh-".

When a new login is created, a new entry is made in the password file with the
desired name. The uid is unique and within the range of system logins. The
group id is the same for all creations. This is controlled by the #define CFGID
(10) in the source. The password is cleared. Password aging is set for 2 weeks
minimum and 10 weeks maximum. If "-r″ is specified, the command may have
limited access (only a few commands have a limited access mode). If "-R″ is
specified, the command will have full access.

235-700-200
November 1998

COMMANDS

ADMIN(1)

Issue 7.00 See Warning in Section 1.1 Page admin-1

The passwd command can then be used with this nlogin- to set the password of
the command.

Login Deletion

The format for login deletion is:

admin -d ologin

where ologin is the login to delete.

System logins cannot be deleted. Only craft and command logins can be deleted.
This procedure deletes all at(1) and crontab(1) jobs owned by the login. If the
login home directory ends [right after a slash (’/’)] with the login name, then the
login home directory and all files within it are deleted. Finally, the entry from
the password file is deleted.

Login Rename

The format for login rename is:

admin -o ologin -n nlogin

where ologin is the old login and nlogin is the new login name. System logins
cannot be renamed. The procedure is to delete all at(1) and crontab(1) jobs
owned by the old login.

If the old login home directory ends [right after a slash ("/")] with the old login
name, then the new home directory is the same as old except that the new login
name replaces the old login name in the directory name.

In this case, the old home directory is renamed to be the new home directory. If
the old home directory does not end with old login name, then the home
directory is not changed. No files are deleted in either case.

Clear Password

The format to clear a password is:

admin -c ologin

where ologin is the login to have its password cleared.

The clear procedure deletes the selected login password from the password file.
The next time a login is attempted on this login name, a new password will be
requested.

SYSTEM LOGINS

A system login is a login with a uid of less than or equal to the #define LIMSID
(10). System logins can only have their password cleared by this command.

EXAMPLES

To add the pds/mml login ralph enter:

admin -a ralph -p

COMMANDS 235-700-200
November 1998

ADMIN(1)

Page admin-2 See Warning in Section 1.1 Issue 7.00

To add the UNIX system login bill enter:

admin -a bill -u

To clear the password of login mary enter:

admin -c mary

To rename the login mary as ann enter:

admin -o mary -n ann

To delete the login richard enter:

admin -d richard

To allow a password on the command sh enter:

admin -a sh- -r

FILE

/etc/passwd

SEE ALSO

at(1), crontab(1), passwd(1)

DIAGNOSTICS

Various diagnostics are issued if the login name is too short, too long, or wrong
character set. Also, diagnostics are issued if nlogin already exists, or if ologin
does not exit, or is a system login.

235-700-200
November 1998

COMMANDS

ADMIN(1)

Issue 7.00 See Warning in Section 1.1 Page admin-3

NAME

at,

batch — execute commands at a later time

SYNOPSIS
at time [date] [+ increment]
at -r job ...
at -l [job ...]
batch

DESCRIPTION

At and batch read commands from standard input are to be executed at a later
time. At allows you to specify when the commands should be executed, while
jobs queued with batch will execute when system load level permits. At -r
removes jobs previously scheduled with at. The -l option reports all jobs
scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless they
are redirected elsewhere. The shell environment variables, current directory,
and umask are retained when the commands are executed. Open file
descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file
/unixa/lib/cron/at.allow . If that file does not exist, the file
/unixa/lib/cron/at.deny is checked to determine if the user should be denied
access to at. If neither file exists, only root is allowed to submit a job. If either
file is at.deny , global usage is permitted. The allow/deny files consist of one
user name per line.

The time may be specified as 1, 2, or 4 digits. One- and two-digit numbers are
taken to be hours; four digits to be hours and minutes. The time may
alternately be specified as two numbers separated by a colon, meaning hour :
minute . A suffix am or pm may be appended; otherwise, a 24-hour clock time is
understood. The suffix zulu may be used to indicate GMT (Greenwich mean
time). The special names noon, midnight, now , and next are also recognized.

An optional date may be specified as either a month name followed by a day
number (and possibly year number preceded by an optional comma) or a day of
the week (fully spelled or abbreviated to three characters). Two special "days,"
today and tomorrow , are recognized. If no date is given, today is assumed if the
given hour is greater than the current hour and tomorrow is assumed if it is
less. If the given month is less than the current month (and no year is given),
next year is assumed.

The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years . (The singular form is also
accepted.)

Thus, legitimate commands include:

235-700-200
November 1998

COMMANDS

AT(1)

Issue 7.00 See Warning in Section 1.1 Page at-1

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

At and batch write the job number and schedule time to standard error.

Batch submits a batch job. It is almost equivalent to "at now." It is different in
the following ways:

1. 1. It goes into a different queue.

2. 2. "at now" will respond with the error message too late.

At -r removes jobs previously scheduled by at or batch. The job number is the
number given to you previously by the at or batch command. You can also get
job numbers by typing at -l. Unless you are the super user, only you can remove
your own jobs.

EXAMPLES

The at and batch commands read from standard input the commands to be
executed at a later time. Sh (1) provides different ways of specifying standard
input. Within your commands, it may be useful to redirect standard output.

This sequence can be used at a terminal:
batch

sort filename >outfile

<control-D> (hold down ’control’ and depress ’D’)

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
shell procedure (the sequence of output redirection specifications is significant):

batch <<!

sort filename 2>&1 >outfile | mail loginid

!

To have a job reschedule itself, invoke at from within the shell procedure by including
code similar to the following within the shell file:

echo "sh shellfile ″ | at 1900 thursday next week

FILES

/unixa/lib/cron - main cron directory
/unixa/lib/cron/at.allow - list of allowed users
/unixa/lib/cron/at.deny - list of denied users
/unixa/lib/cron/queue - scheduling information
/unixa/spool/cron/atjobs - spool area

COMMANDS 235-700-200
November 1998

AT(1)

Page at-2 See Warning in Section 1.1 Issue 7.00

SEE ALSO

cron(1), kill(1), mail(1), nice(1), ps(1), sh(1)

DIAGNOSTICS

Complains about various syntax errors and times out of range.

235-700-200
November 1998

COMMANDS

AT(1)

Issue 7.00 See Warning in Section 1.1 Page at-3

NAME

atomsw — Atomic switch files

SYNOPSIS
atomsw file1 file2

DESCRIPTION

Atomic switch of two files. The contents, permissions, and owners of two files
are switched in a single operation. In case of a system fault during the
operation of this command, file2 will either have its original contents,
permissions and owner, or will have file1’s contents, permissions and owner.
Thus, file2 is considered precious. File1 may be truncated in case of a system
fault.

RESTRICTIONS

Both files must exist. Both files must reside on the same file system. Neither
file may be a "special device" (for example, a TTY port).

To enter this command from the craft shell, switching file "/tmp/abc" with file
"/tmp/xyz", enter for MML:

EXC:ENVIR:UPROC,FN="/bin/atomsw",ARGS="/tmp/abc"-"/tmp/xyz";

For PDS enter:

EXC:ENVIR:UPROC,FN"/bin/atomsw",ARGS("/tmp/abc","/tmp/xyz")!

NOTE

File 1 may be lost during a system fault.

FILES

/bin/atomsw

235-700-200
November 1998

COMMANDS

ATOMSW(1)

Issue 7.00 See Warning in Section 1.1 Page atomsw-1

NAME

awk — 1985 version of awk language

SYNOPSIS
awk [-Fregex] [’program’] [parameters] [files]
awk [-Fregex] [-f ’programfile’] [parameters] [files]

DESCRIPTION

The 1985 awk command is an expanded version of the previous standard awk
pattern-scanning and processing language. The language has been augmented
by the addition of dynamically-defined regular expressions, user-defined
functions, improved input/output flexibility, and new built-in functions.

The awk command scans each input file for lines that match any of a set of
patterns specified in program. With each pattern in program there can be an
associated action that will be performed when a line of a file matches the
pattern. The set of patterns may appear literally as program, or in a file
specified as -f programfile. The program string should be enclosed in single
quotes (’) to protect it from the shell.

Parameters, in the form x=... y=... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file
name - means the standard input. Each line is matched against the pattern
portion of every pattern-action statement; the associated action is performed for
each matched pattern.

An input line is made up of fields separated by white space (tabs and blanks).
(This default can be changed by using FS or the -F parameter; see below). The
fields are denoted $1, $2 ...; $0 refers to the entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern always matches.

A pattern can be one of the following:

235-700-200
November 1998

COMMANDS

AWK(1)

Issue 7.00 See Warning in Section 1.1 Page awk-1

BEGIN matches before any input is read
END matches after all input is read
relational expr matches if the relation holds (for example,

NR == 3)
/reg exp/ or reg exp matches the regular expression
pattern1 && pattern2 matches if both patterns match
pattern1 || pattern2 matches if either pattern matches
(pattern) grouping: matches pattern
!pattern matches if pattern does not match (NOT

operator)
pattern1, pattern matches from the line where pattern1

matched up to (andincluding) the line where
pattern2 matched

func name (parameter list) { statement } defines a function
called name .

An action is a sequence of statements. Statements are terminated by
semicolons, new-lines, or right braces. Statements include the following that
affect control-flow:

if (conditional) statement

if (conditional) statement else statement

if (subscript in array) statement else statement

while (conditional) statement

for (expression ; expression ; expression) statement

break

continue

{ [statement] ... }

next

exit

exit expression

function-name (expr, expr, ...)

return

return expression

Input-output statements include:

COMMANDS 235-700-200
November 1998

AWK(1)

Page awk-2 See Warning in Section 1.1 Issue 7.00

close (filename) close file
getline set $0 from next input record
getline<" file″ set $0 from next record of file
getline var set var from next input record
getline var <"file″ set var from next record of file
print print current record
print expression-list print expressions
print expression-list >"file″ print expressions on file
printf format , expression-list format and print
printf format , expression-list>"file″ format and print on file
system(cmd-line) execute command cmd-line, return its exit

status.

Expressions take on string or numeric values as appropriate, and are built
using the operators (in increasing precedence) blank (string concatenation), +/-
(addition/subtraction), * or / or % (multiplication/division/modulus), ++ or ––
(increment/decrement, prefix and postfix), and $ (field value). The C operators
+=, -=, /=, and %= are also available expressions, sharing the lowest precedence
with the assignment operator =. Logical OR (| |), and logical AND (&&),
regular expression match () and non-match (!), and relational operators (<, <=,
>, >=, ==, !=) are also available.

Variables may be scalars, array elements (denoted x[i]) or fields. Variables are
initialized to the null string (treated as zero numerically). Array subscripts mat
be any string, not necessarily numeric; this allows for a form of associative
memory. String constants are quoted (").

printf format conversions that are supported are:

%c ASCII character
%d decimal number
%o unsigned octal number
%s string
%x unsigned hexadecimal number
%% print a %; no argument is converted .

Additional parameters may lie between the % and the control letter:

- left-justify expression in its field

width pad field to this width as needed; leading 0 pads with zeros .

Some of the built-in functions are:

gsub(regex, string, target)
substitute string for each substring matching regular expression
regex in string target, return number of substitutions. If target is
omitted, use $0. All occurrences of & in string are replaced by the
substring matched by regex. The special meaning of & may be
turned off by preceding it with a backslash, as in \& .

235-700-200
November 1998

COMMANDS

AWK(1)

Issue 7.00 See Warning in Section 1.1 Page awk-3

index(target , string)
return index of string in string target, or 0 if not present. (the first
character is at index 1.)

length(string)
return length of string

match(string, regex)
return index of where string matches regex or 0 if there is no
match; set RSTART and RLENGTH.

split(string, array, regex)
split string into array on regular expression regex, return number
of fields. If regex is omitted, FS is used in its place.

sprintf(fmt, expr-list)
format expr-list according to fmt, and return the resulting string

sub(regex, string, target)
like gsub except only the first matching substring is replaced

substr(string, index, number)
return number-character substring of string starting at index. (The
first character is at index 1.) If number is omitted, the substring
goes to the end of string.

Patterns are regular expressions made of the following pieces (increasing
precedence):

c match non-metacharacter c

\c match any literal character c

\. matches any character but newline

^ matches beginning of line or string

$ matched end of line of string

[abc...] character class matches any one of abc...

[^abc...] negated character class matches any but one of abc... and newline

r1|r2 alternation; matches either r1 or r2

r1r2 concatenation; matches r1, then r2

r+ matches one or more r’s

r* matches zero or more r’s

r? matches zero or one r

(r) grouping; matches r

Regular expression constants must be surrounded by slashes; dynamic regular
strings may be the values of variables or strings.

A pattern regex may be used to specify the field separator(s) by starting the
program with:

BEGIN { FS = regex }

or by using the -F regex option.

COMMANDS 235-700-200
November 1998

AWK(1)

Page awk-4 See Warning in Section 1.1 Issue 7.00

Other variable names with special meanings include:

ARGC number of command-line arguments

ARGV array of command-line arguments (0..ARGC-1)

FILENAME the name of the current input file;

FNR input record number in current file

NF the number of fields in the current record;

NR the ordinal number of the current record;

OFMT the output format for numbers;

OFS the output field separator (default blank);

ORS the output record separator (default new-line);

RLENGTH length of string matched by regular expression in match ()

RS the input record separator (default new-line);

RSTART beginning position of string matched in match ()

SUBSEP separator for array subscripts of form [i, j,...] (default "[0]34")

EXAMPLES

Print lines longer than 72 characters:
length > 72

Print first two fields in opposite order:
{ print $2, $1 }

Add up first column, print sum and average:
{ s =+ $1 }

END { print "sum is", s, "average is", s/NR }

Print fields in reverse order:
{ for (i = NF; i > 0; ––i) print $i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:
/Page/ { $2 = n++; }
{ print }
command line: awk -f program n=5 input

235-700-200
November 1998

COMMANDS

AWK(1)

Issue 7.00 See Warning in Section 1.1 Page awk-5

SEE ALSO

The Awk Programming Language by A. V. Aho, B. W. Kernighan, P. J.
Weinberger. Published by Addison-Wesley, 1988, ISBN 0-201-07981-X.

LIMITATIONS

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number, add 0 to it; to force it to be treated as a
string, concatenate the null string ("") to it.

The 5ESS®-2000 switch version does not support floating point numbers nor
any floating point functions.

COMMANDS 235-700-200
November 1998

AWK(1)

Page awk-6 See Warning in Section 1.1 Issue 7.00

NAME

banner — make posters

SYNOPSIS
banner strings

DESCRIPTION

Banner prints its arguments (each up to 10 characters long) in large letters on
the standard output.

SEE ALSO

echo(1)

235-700-200
November 1998

COMMANDS

BANNER(1)

Issue 7.00 See Warning in Section 1.1 Page banner-1

NAME

basename, dirname — deliver portions of path names

SYNOPSIS
basename string [suffix]dirname string

DESCRIPTION

Basename deletes any prefix ending in a slash (/) and the suffix (if present in
string , and prints the results on the standard output. It is normally used inside
substitution marks (’’) within shell procedures.

Dirname delivers all but the last level of the path name in string.

EXAMPLES

The following example, invoked with the argument /usr/src/cmd/cat.c, compiles
the named file and moves the output to a file named cat in the current
directory:

cc $1 mv a.out basename $1 .c

The following exmaple will set the shell variable NAME to /usr/src/cmd:

NAME=dirname /usr/src/cmd/cat.c

SEE ALSO

sh(1)

BUGS

The basename of / is null and considered an error.

235-700-200
November 1998

COMMANDS

BASENAME(1)

Issue 7.00 See Warning in Section 1.1 Page basename-1

NAME

batch

DESCRIPTION

See at.

235-700-200
November 1998

COMMANDS

Batch(1)

Issue 7.00 See Warning in Section 1.1 Page batch-1

NAME

cat — concatenate and print files

SYNOPSIS
cat [-b] [-s] file ...

DESCRIPTION

Cat reads each filein sequence and writes it on the standard output. Thus:
cat file

prints the file, and:
cat file 1 file 2 > file 3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument — is encountered, cat reads from the
standard input file. Output is buffered unless the -u option is specified. The -s
options makes cat silent about nonexistent files. No input file may be the same
as the output file unless it is a special file.

WARNING

Command formats such as
cat file 1 file 2 > file 1

will cause the original data in file 1to be lost; therefore, take care when using
shell special characters.

SEE ALSO

cp(1), pr(1)

235-700-200
November 1998

COMMANDS

CAT(1)

Issue 7.00 See Warning in Section 1.1 Page cat-1

NAME

cftshell — execute craft shell

SYNOPSIS
cftshell command

DESCRIPTION

cftshellallows the UNIX operating system user to execute a single craft shell
command. Control returns to the user after the command acknowledgement
(e.g., OK, PF). Execution of the command may continue in the backgorun if it is
long running.

EXAMPLE

cftshell ’OP:CLK’

235-700-200
November 1998

COMMANDS

CFTSHELL(1)

Issue 7.00 See Warning in Section 1.1 Page cftshell-1

NAME

chgrp

DESCRIPTION

See chown.

235-700-200
November 1998

COMMANDS

CHGRP(1)

Issue 7.00 See Warning in Section 1.1 Page chgrp-1

NAME

chmod — change mode

SYNOPSIS
chmod mode files

DESCRIPTION

The permissions of the named files are changed according to mode, which may
be absolute or symbolic. An absolute mode is an octal number constructed from
the OR of the following modes:

4000 set user on execution
2000 set group on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[" who "] " op permissio n " [" op permission "]

The who part is a combination of the letters u (for user’s permissions), g (group) and o
(other). The letter a stands for ugo ; the default if who is omitted.

Op can be + to add permission to the file mode, - to take away permission, or =
to assign permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s
(set owner or group ID), and t (save text, or sticky); u , g , or o indicate that
permission is to be taken from the current mode. Omitting permission is only
useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations are
performed in the order specified. The letter s is only useful with u or g, and t
only works with u.

Only the owner of a file (or the super user) may change its mode.

EXAMPLES

The first example denies write permission to others; the second makes a file
executable:

chmod o-w file

chmod +x file

SEE ALSO

ls(1)

235-700-200
November 1998

COMMANDS

CHMOD(1)

Issue 7.00 See Warning in Section 1.1 Page chmod-1

NAME

chown, chgrp — change group or owner

SYNOPSIS
chown owner file ...
chgrp group file ...

DESCRIPTION

Chown changes the owner of the files to owner. The owner may be either a
decimal user ID or a login name found in the password file.

Chgrp changes the group of the files to group . The group may be either a
decimal group ID or a group name found in the group file.

FILES

/etc/passwd
/etc/group

235-700-200
November 1998

COMMANDS

CHOWN(1)

Issue 7.00 See Warning in Section 1.1 Page chown-1

NAME

closewd — close the window that is opened by openwd

SYNOPSIS
closewd

DESCRIPTION

Closewd closes the window opened by openwd. After closewd, processes may not
open (with write) block devices for mounted file systems. This command should
follow openwd. But its use is not mandatory since the window will be closed
automatically by the file manager (20 minutes after open).

SEE ALSO

openwd(1), fsdb(1)

235-700-200
November 1998

COMMANDS

CLOSEWD(1)

Issue 7.00 See Warning in Section 1.1 Page closewd-1

NAME

clrfs — construct a file system

SYNOPSIS
clrfs special blocks [i-node blocks]

DESCRIPTION

Clrfs constructs a file system by writing on the special file according to the
directions found in the remainder of the command line. If the second argument
is given as a string of digits, clrfs builds a file system with a single empty
directory on it.

The size of the file system is the value of blocks interpreted as a decimal
number. The boot block is left uninitialized. If the optional number of i-node
blocks is given, the i-list consists of eight times that value (that is, there are
eight i-nodes per i-node block). If the optional number of i-node blocks is not
given, the default is the number of blocks divided by four.

235-700-200
November 1998

COMMANDS

CLRFS(1)

Issue 7.00 See Warning in Section 1.1 Page clrfs-1

NAME

clri — clear i-node

SYNOPSIS
/etc/clri filesystem i-numbers

DESCRIPTION

Clri writes zeros on the 64 bytes occupied by the i-nodes numbered i-number .
The filesystem argument must be a special filename referring to a device
containing a file system. After clri, any blocks in the affected file will show up
as "missing" in an ichk of the filesystem .

Read and write permission is required on the specified filesystem device. The
i-node becomes allocatable.

The primary purpose of this routine is to remove a file which does not appear in
any directory. If it is used to remove an i-node which appears in a directory,
care should be taken to track down the entry and remove it. Otherwise, when
the i-node is reallocated to some new file, the old entry will still point to that
file. At that point, removing the old entry will destroy the new file. The new
entry will again point to an unallocated i-node, so the whole cycle is likely to be
repeated again and again.

SEE ALSO

ichk(1)

LIMITATIONS

If the file is open, clri is likely to be ineffective.

235-700-200
November 1998

COMMANDS

CLRI(1)

Issue 7.00 See Warning in Section 1.1 Page clri-1

NAME

cmp — compare two files

SYNOPSIS
cmp [-l] [-s] file1 file2

DESCRIPTION

The two files are compared. (If file1 is -, the standard input is used.) Under
default options, cmp makes no comment if the files are the same; if they differ,
it announces the byte and line number at which the difference occurred. If one
file is an initial subsequence of the other, that fact is noted.

Options:

-l Print the byte number (decimal) and the differing bytes (octal) for
each difference.

-s Print nothing for differing files; return codes only.

SEE ALSO

diff(1)

DIAGNOSTICS

Exit code 0 is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

235-700-200
November 1998

COMMANDS

CMP(1)

Issue 7.00 See Warning in Section 1.1 Page cmp-1

NAME

coflsb — clear off-line superblock

SYNOPSIS
coflsb <partition anme> <mount point>

DESCRIPTION

The coflsb command locates the given partition name in the off-line SG data
base, and extracts the disk number, partition number, partition block count, and
partition inode block count for that partition. This information is then used to
update the superblock of the named off-line partition. The updated off-line
partition is then mounted on /tmp/ofl/ mount point. When the partition is
successfully mounted, the coflsb process goes to sleep for four (4) hours,
allowing data transfer to take place.

DIAGNOSTICS

Coflsb will fail with an error code if the off-line SG data base cannot be
attached or read, or if the requested off-line partition cannot be successfully
mounted. Appropriate error messages are printed before coflsb exits.

FILES

/tmp/dev/sgdbase - temporary device file for attaching to SG data base

/tmp/dev/attpar - temporary device file for attaching requested off-line partition

/tmp/ofl/attpar - temporary mount point for off-line SG data base

/tmp/ofl/<mount point> - temporary mount point for requested off-line partition

EXAMPLES

The command:
coflsb no5sodd1 fubar

will mount the off-line no5sodd1 partition on /tmp/ofl/fubar.

CAVEATS

Since the off-line partition is only accessible while coflsb is active, this command
should be run asynchronously (in the background). Also, coflsb assumes that the
odd numbered disks are the off-line disks.

SEE ALSO

fsinit(1)

235-700-200
November 1998

COMMANDS

COFLSB(1)

Issue 7.00 See Warning in Section 1.1 Page coflsb-1

NAME

compress, uncompress, zcat — compress file, uncompress file, cat compressed
file

SYNOPSIS
compress [-f] [-v] [-c] [-V] [-b bits] [name ...]
uncompress [-f] [-v] [-c] [-V] [name ...]
zcat [-V] [name ...]

DESCRIPTION

Compress reduces the size of the named files using adaptive Lempel-Ziv coding.
Whenever possible, each file is replaced by one with the extension, .Z, while
keeping the same ownership modes, access and modification times. If no files
are specified, the standard input is compressed to standard output. Compressed
files can be restored to their original form by using uncompress or zcat.

The -f option will force compression of name. This is useful for compressing an
entire directory, even if some of the files do not shrink. If -f is not given and
compress is run in the foreground, the user is prompted as to whether an
existing file should be overwritten.

The -c option makes compress/uncompress write to the standard output; no files
are changed. The nondestructive behavior of zcat is identical to that of
uncompress -c.

Compress uses the modified Lempel-Ziv algorithm popularized in "A Technique
for High Performance Data Compression," Terry A. Welch, IEEE Computer, Vol.
17, No. 6 (June 1984), Pages 8 through 19. Common substrings in the file are
first replaced by 9-bit codes 257 and up. When code 512 is reached, the
algorithm switches to 10-bit codes and continues to use more bits until the limit
specified by the -b flag is reached (default 16). Bits must be between 9 and 16.
The default can be changed in the source to allow compress to be run on a
smaller machine.

After the bits limit is attained, compress periodically checks the compression
ratio. If it is increasing, compress continues to use the existing code dictionary.
However, if the compression ratio decreases, compress discards the table of
substrings and rebuilds it from scratch. This allows the algorithm to adapt to
the next "block" of the file.

Note that the -b flag is omitted for uncompress, since the bits parameter
specified during compression is encoded within the output, along with a magic
number to ensure that neither decompression of random data nor recompression
of compressed data is attempted.

The amount of compression obtained depends on the size of the input, the
number of bits per code, and the distribution of common substrings. Typically,
text such as source code or English is reduced by 50 to 60 percent. Compression
is generally much better than that achieved by Huffman coding (as used in
pack), or adaptive Huffman coding (compact), and takes less time to compute.

235-700-200
November 1998

COMMANDS

COMPRESS(1)

Issue 7.00 See Warning in Section 1.1 Page compress-1

Under the -v option, a message is printed yielding the percentage of reduction
for each file compressed.

If the -V option is specified, the current version and compile options are printed
on stderr.

Exit status is normally 0; if the last file is larger after (attempted) compression,
the status is 2; if an error occurs, exit status is 1.

DIAGNOSTICS

Usage: compress [-dfvcV] [-b maxbits] [file ...]
Invalid options were specified on the command line.

Missing maxbits
Maxbits must follow -b.

file: not in compressed format
The file specified to uncompress has not been compressed.

file: compressed with xx bits, can only handle yy bits
File was compressed by a program that could deal with more bits
than the compress code on this machine. Recompress the file with
smaller bits.

File: already has .Z suffix –– no change
The file is assumed to be already compressed. Rename the file and
try again.

file:filename too long to tack on .Z
The file cannot be compressed because its name is longer than 12
characters. Rename and try again.

file:already exists; do you wish to overwrite (y or n)?
Respond "y" if you want the output file to be replaced; "n" if not.

uncompress: corrupt input
A SIGSEGV violation was detected which usually means that the
input file has been corrupted.

Compression: xx.xx%
Percentage of the input saved by compression. (Relevant only for
-v.)

–– not a regular file: unchanged
When the input file is not a regular file (e.g., a directory), it is left
unaltered.

–– has xx other links: unchanged
The input file has links; it is left unchanged. See ln (1) for more
information.

–– file unchanged
No savings is achieved by compression. The input remains
unchanged.

To enter this command from the craft shell, compressing file "/tmp/abc" enter,
for MML:

EXC:ENVIR:UPROC,FN="/bin/compress",ARGS="/tmp/abc";

For PDS enter:

COMMANDS 235-700-200
November 1998

COMPRESS(1)

Page compress-2 See Warning in Section 1.1 Issue 7.00

EXC:ENVIR:UPROC,FN"/bin/compress",ARGS"/tmp/abc"!

BUGS

Although compressed files are compatible between machines with large memory,
-b 12 should be used for file transfer to architectures with a small process data
space (64 kb or less, as exhibited by the Intel 80286, etc.).

235-700-200
November 1998

COMMANDS

COMPRESS(1)

Issue 7.00 See Warning in Section 1.1 Page compress-3

NAME

cp, ln, mv — copy, link, or move files

SYNOPSIS
cp file1 [file2 ...] target
ln file1 [file2 ...] target
mv file1 [file2 ...] target

DESCRIPTION

File1 is copied (linked, moved) to target. Under no circumstance can file1 and
target be the same [take care when using sh (1) metacharacters]. If target is a
directory, then one or more files are copied (linked, moved) to that directory.

If mv determines that the mode of target forbids writing, it will print the mode
and read the standard input for one line (if the standard input is a terminal). If
the line begins with y, the move takes place; if not, mv exits.

Only mv will allow file1 to be a directory, in which case the directory rename
will occur only if the two directories have the same parent.

SEE ALSO

cpio(1), rm(1)

BUGS

If file1 and target lie on different file systems, mv must copy the file and delete
the original. In this case, the owner name becomes that of the copying process
and any linking relationship with other files is lost.

Ln will not link across file systems.

235-700-200
November 1998

COMMANDS

CP(1)

Issue 7.00 See Warning in Section 1.1 Page cp-1

NAME

cpio — copy file archives in and out

SYNOPSIS
cpio -o [acBv]
cpio -i [BcdmrtuvfsSb 6] [patterns]
cpio -p [adlmruv] directory

DESCRIPTION

Cpio -o (copy out) reads the standard input to obtain a list of path names and
copies those files onto the standard output together with path name and status
information.

Cpio -i (copy in) extracts files from the standard input which is assumed to be
the product of a previous cpio -o . Only files with names that match patterns
are selected. Patterns are given in the name-generating notation of sh (1). In
patterns , meta-characters ?, ∗, and [...] match the slash / character. Multiple
patterns may be specified and if no patterns are specified, the default for
patterns is ∗ (i.e., select all files). The extracted files are conditionally created
and copied into the current directory tree based upon the options described
below.

Cpio -p (pass) reads the standard input to obtain a list of path names of files
that are conditionally created and copied into the destination directory tree
based upon the options described below.

The meanings of the available options are:

a Reset access times of input files after they have been copied.

B Input/output is to be blocked 5,120 bytes to the record (does not
apply to the pass option; meaningful only with data directed to or
from /dev/rmt?).

d Directories are to be created as needed.

c Write header information in ASCII character form for portability.

r Interactively rename files. If the user types a null line, the file is
skipped.

t Print a table of contents of the input. No files are created.

u Copy unconditionally (normally, an older file will not replace a
newer file with the same name).

v Verbose : causes a list of file names to be printed. When used with
the t option, the table of contents looks like the output of an ls -l
command [see ls (1)].

l Whenever possible, link files rather than copying them. Usable
only with the -p option.

m Retain previous file modification time. This option is ineffective on
directories that are being copied.

f Copy in all files except those in patterns.

s Swap bytes. Use only with the -i option.

235-700-200
November 1998

COMMANDS

CPIO(1)

Issue 7.00 See Warning in Section 1.1 Page cpio-1

S Swap halfwords. Use only with the -i option.

b Swap both bytes and halfwords. Use only with the -i option.

6 Process an old (that is, UNIX System Sixth Edition format) file.
Only useful with -i (copy in).

EXAMPLES

The first example below copies the contents of a directory into an archive; the
second duplicates a directory hierarchy:

ls | cpio -o >/dev/mt08

cd olddir

find . -depth -print | cpio -pdl newdir

The trivial case "find . -depth -print | cpio -oB >/dev/rmt08" can be handled more
efficiently by:

find . -cpio /dev/mt08

SEE ALSO

find(1)

BUGS

Path names are restricted to 128 characters. If there are too many unique
linked files, the program runs out of memory to keep track of them and,
thereafter, linking information is lost. Only the super user can copy special files.
The -B option does not work with certain magnetic tape drives.

COMMANDS 235-700-200
November 1998

CPIO(1)

Page cpio-2 See Warning in Section 1.1 Issue 7.00

NAME

cron — clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION

Cron executes commands at specified dates and times. Regularly scheduled
commands can be specified according to instructions found in crontab files;
users can submit their own crontab file via the crontab command. Commands
which are to be executed only once may be submitted via the at command. Since
cron never exits, it should only be executed once.

Cron only examines crontab files and at command files during process
initialization and when a file changes. This reduces the overhead of checking for
new or changed files at regularly scheduled intervals.

Queue Definitions

Cron can limit dynamically the number of concurrently running jobs. It can also
maintain up to 26 separate queues and control the number of jobs executed in
each one. The file queuedefs is used to maintain definitions for all queues.
Each line of the file must have the following format:
q. NNj NNnNNw

where

q is a letter a-z indicating the job queue.

NNj

is the limit on jobs that can be running at any one time for the job queue. (NN is an
integer; its default is 100.)

NNn is the nice (1) value that is assigned each command executed for the job
queue. (Default is 2.)

NNw is the time (in seconds) to wait before retrying to execute a command if all
the criteria for running the command are not met. (Default is 60.)

Empty fields are initialized to the default values. The following is an example of
a queuedefs file.

a.4j1n

b.2j2n90w

c.0n10j

n.120w4n1j

Changes to queue definitions take effect before the next job is executed by the cron
daemon. If this file does not exist, the default values are used.

235-700-200
November 1998

COMMANDS

CRON(1)

Issue 7.00 See Warning in Section 1.1 Page cron-1

Prototype File

The prototype file provides a method to customize at command files by
controlling what information is written into the at job file. If a file named
.proto.q exists (where q indicates a queue name), this file is copied into the job
file. Otherwise, the file .proto is used.

The following substitutions are made during creation of an at job file.

$m user’s current file creation mask.

$l user’s current file size limit (not implemented)

$d name of the current working directory

$t time (in seconds) that the jobs is scheduled to execute

$< read standard input until EOF is reached

The following is an example of a prototype file:
cd $d

ulimit $l

umask $m

$<

The at command will exit with an error if no prototype file exists.

Log Information

Cron logs all command invocations, terminations, and status information in the
file log . Records that begin with the character > pertain to command
invocations. Two invocation records are written for each command execution.
The first displays the command that is being executed; the second contains the
login name, process id, job queue, and a timestamp for when the command was
invoked. Command termination records begin with the character < and are
similar to the second invocation record, except that a nonzero termination
status or exit status is also printed. Records that begin with an ! indicate status
information.

Files to Limit Access to the Facility

There is potential for misuse of system resources through use of the crontab
and at commands. Cron provides a method to restrict user access to it. The files
cron.allow and at.allow contain login names of users (one per line) allowed
access to the crontab and at commands, while the files cron.deny and at.deny
contain login names of users denied access to the commands.

When a user submits a crontab file, crontab checks cron.allow for a list of users
permitted to have a crontab. If that file does not exist, the file cron.deny is
scanned for users who are denied crontabs. If neither file exists, only root is
allowed to have a crontab file. The same scheme is used for determining access
to the at command. The null file cron.allow would mean no user is allowed a
crontab while a null file cron.deny would mean no user is denied a crontab.

COMMANDS 235-700-200
November 1998

CRON(1)

Page cron-2 See Warning in Section 1.1 Issue 7.00

Defining Queues

The at command can queue jobs in one of 26 different queues, with the cron
daemon controlling the number of executions for each queue. This mechanism
can be used by system administrators to limit the number of simultaneous
executions of high-resource commands. Running the at command with -q c as
the first argument queues the command in queue c . The default queue is a . A
special queue b is defined to be a batch queue; jobs in this queue run whenever
the defined maximum level is not exceeded (specified in the queuedefs file).
Cron executions are limited by the definition of the queue c . Jobs in all other
queues run at the time specified on the command line.

The ability to define queues gives administrators a way to restrict executions
for commands. An example of its use would be in providing a batch sort (1)
facility. All that need be done is to define a queue in the queuedefs file to spool
sort commands, create a prototype file (if necessary), and replace the sort
command with a shell that creates an at job and invokes the real sort . The real
sort command should be moved out of a standard bin location.

FILES

/unixa/lib/cron main cron directory
/unixa/lib/cron/log accounting information
/unixa/spool/cron spool area

SEE ALSO

at(1), crontab(1), sh(1)

DIAGNOSTICS

A history of all actions taken by cron are recorded in /unixa/lib/cron/log.

235-700-200
November 1998

COMMANDS

CRON(1)

Issue 7.00 See Warning in Section 1.1 Page cron-3

NAME

crontab — user crontab file

SYNOPSIS
crontab [file]
crontab -r
crontab -l

DESCRIPTION

Crontab copies the specified file, or standard input if no file is specified, into a
directory that holds all users’ crontabs. The -r option removes a user’s crontab
from the crontab directory. Crontab -l will list the crontab file for the invoking
user.

A user is permitted to use crontab if their name appears in the file
/unixa/lib/cron/cron.allow. If that file does not exist, the file
/unixa/lib/cron/cron.deny is checked to determine if the user should be denied
access to crontab. If neither file exists, only root is allowed to submit a job. If
either file is at.deny , global usage is permitted. The allow/deny files consist of
one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

minute (0-59),

hour (0-23),

day of the month (1-31),

month of the year (1-12),

day of the week (0-6 with 0=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values), or a list of
elements separated by commas. An element is either a number, or two numbers
separated by a minus sign (meaning an inclusive range). Note that the specification of
days may be made by two fields (day of the month and day of the week). If both are
specified as a list of elements, both are adhered to. For example, 0 0 1,15 * 1 would
run a command on the first and fifteenth of each month, as well as on every Monday.
To specify days by only one field, the other field should be set to * (for example, 0 0 * *
1 would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell
at the specified times. A percent character in this field (unless escaped by \) is
translated to a new-line character. Only the first line (up to a % or end of line)
of the command field is executed by the shell. The other lines are made
available to the command as standard input.

The shell is invoked from your $HOME directory with an arg0 of sh . Users who
desire to have their .profile executed must explicitly do so in the crontab file.
Cron supplies a default environment for every shell, definingHOME, LOGNAME,
SHELL(=/bin/sh) , and PATH(=/bin:/usr/bin::) .

235-700-200
November 1998

COMMANDS

CRONTAB(1)

Issue 7.00 See Warning in Section 1.1 Page crontab-1

Note: Users should remember to redirect the standard output and standard
error of their commands! If this is not done, any generated output or errors will
be mailed to the user.

FILES

/unixa/lib/cron # main cron directory
/unixa/spool/cron/crontabs # spool area
/unixa/lib/cron/log # accounting information
/unixa/lib/cron/cron.allow # list of allowed users
/unixa/lib/cron/cron.deny # list of denied users

SEE ALSO

cron(1), sh(1)

COMMANDS 235-700-200
November 1998

CRONTAB(1)

Page crontab-2 See Warning in Section 1.1 Issue 7.00

NAME

cut — cut out selected fields or each line of a file

SYNOPSIS
cut -clist [file1 file2 ...]
cut -flist [-d char] [-s] [file1 file2 ...]

DESCRIPTION

Use cut to cut out columns from a table or fields from each line of a file; in data
base parlance, it implements the projection of a relation. The fields as specified
by list can be fixed length, that is, character positions as on a punched card (-c
option) or the length can vary from line to line and be marked with a field
delimiter character like tab (-f option). Cut can be used as a filter; if no files are
given, the standard input is used.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing
order), with optional - to indicate ranges as in the -o option of nroff
/ troff for page ranges; for example, 1,4,7 ; 1-3,8 ; -5,10 (short for
1-5,10); or 3- (short for third through last field).

-clist The list following -c (no space) specifies character positions (for
example, -c1-72 would pass the first 72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated in
the file by a delimiter character (see -d); for example, -f1,7 copies
the first and seventh field only. Lines with no field delimiters will
be passed through intact (useful for table subheadings), unless -s is
specified.

-dchar The character following -d is the field delimiter (-f option only).
Default is tab. Space or other characters with special meaning to
the shell must be quoted.

-s Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the -c or -f option must be specified.

HINTS

Use grep (1) to make horizontal "cuts" (by context) through a file, or paste (1) to
put files together column-wise (that is, horizontally). To reorder columns in a
table, use cut and paste.

EXAMPLES

cut -d: -f1,5 /etc/passwd
mapping of user IDs to names

name=‘;who am i | cut -f1 -d” “‘
to set name to current login name.

235-700-200
November 1998

COMMANDS

CUT(1)

Issue 7.00 See Warning in Section 1.1 Page cut-1

DIAGNOSTICS

line too long
A line can have no more than 1023 characters or fields.

bad list for c/f option
Missing -c or -f option or incorrectly specified list. No error occurs
if a line has fewer fields than the list calls for.

no fields The list is empty.

SEE ALSO

grep(1), paste(1)

COMMANDS 235-700-200
November 1998

CUT(1)

Page cut-2 See Warning in Section 1.1 Issue 7.00

NAME

cx — 3B20D computer core file examiners

SYNOPSIS
cx [-!aphx] [-v vaddr [-n nbytes]] ... file

DESCRIPTION

cx prints the segment images of the specified file. cx resides on the 3B20D
computer. When invoked without options, cx prints all data from all
nonexecutable segments in the given file. Options to modify this behavior follow:

-! prints descriptions of each flag’s meaning. Illegal command lines
generate a terse summary of usage without the descriptions.

-a prints data for all nonexecutable segment images. This is the
default action when no -v, -h, or -x flags are present.

-h prints a header for every segment. This flag also suppresses the
printing of segment data, but -a, -v, or -x cause the designated data
to be printed.

-p requests the pfile meanings, which are different in a small number
of cases. Each segment’s header contains a set of attribute flags. cx
normally decodes the flags using their execution time meanings.

-x prints data for all executable segments. Without -x, the data are
suppressed.

-v vaddr starts printing data from the given address in the segment(s)
containing virtual address vaddr. Unless -n is also given, the rest
of the segment will be printed. Using one or more -v specifications
causes other segment images not to be printed, but -a and -x
override that.

n nbytes prints nbytes bytes instead of printing all of a segment’s data. A
count of zero means print the remainder of the image. This option
applies only to the preceding -v , which must be present.

Values for addr and nbytes are interpreted as hexadecimal numbers.

A core file’s format must be the same as that written by the process manager,
which is very similar to executable pfiles .

Usually the process manager places core files in /cdmp/name, where name is
the ASCII name in the PCB.

In actual core files, the segment images occur in the same order as they
appeared in the process’s segment list. The PCB is first, and the stack is second.
Those segment images in pfiles are empty.

More than one segment can be mapped to the same virtual address, but only
one of them can be active. -v directives apply to all mapped segments, not just
the active one.

235-700-200
November 1998

COMMANDS

CX(1)

Issue 7.00 See Warning in Section 1.1 Page cx-1

NAME

date — print and set the date

SYNOPSIS
date [mmddhhmmyy] [+format]

DESCRIPTION

If no argument is given, or if the argument begins with +, the current date and
time are printed. Otherwise, the current date is set. The first mm is the month
number; dd is the day number in the month; hh is the hour number (24-hour
system); the second mm is the minute number; yy is the last 2 digits of the year
number. For example:

date 1008004585

sets the date to Oct 8, 12:45 AM 1985. The system operates in GMT. Date takes care
of the conversion to and from local standard and daylight time.

If the argument begins with +, the output of date is under the control of the
user. All output fields are of fixed size (zero padded if necessary). Each field
descriptor is preceded by % and will be replaced in the output by its
corresponding value. A single % is encoded by %%. All other characters are
copied to the output without change. The string is always terminated with a
new-line character.

Field Descriptors:

n insert a new-line character

t insert a tab character

m month of year - 01 to 12

d day of month - 01 to 31

y last 2 digits of year - 00 to 99

D date as mm/dd/yy

H hour - 00 to 23

M minute - 00 to 59

S second - 00 to 59

T time as HH:MM:SS

j day of year - 001 to 366

w day of week - Sunday = 0

a abbreviated weekday - Sun to Sat

h abbreviated month - Jan to Dec

r time in AM/PM notation

EXAMPLE
date ’+DATE: %m/%d/%y%nTIME: %H:%M:%S’

235-700-200
November 1998

COMMANDS

DATE(1)

Issue 7.00 See Warning in Section 1.1 Page date-1

would have generated as output:
DATE: 08/01/76

TIME: 14:45:05

DIAGNOSTICS

No permission
if you are not the super user and you try to change the date;

bad conversion
if the date set is syntactically incorrect;

bad format character
if the field descriptor is not recognizable.

FILES

/dev/kmem

WARNING

If the system is call processing, use the PDS/MML command "SET:CLK" to
change the date.

COMMANDS 235-700-200
November 1998

DATE(1)

Page date-2 See Warning in Section 1.1 Issue 7.00

NAME

dc — desk calculator

SYNOPSIS
dc [file]

DESCRIPTION

Dc is an arbitrary precision arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a number
of fractional digits to be maintained. The overall structure of dc is a stacking
(reverse Polish) calculator. If an argument is given, input is taken from that file
until its end, then from the standard input. The following constructions are
recognized:

number The value of the number is pushed on the stack. A number is an
unbroken string of the digits 0-9. It may be preceded by an
underscore (_) to input a negative number. Numbers may contain
decimal points.

+ - / * % ^ The top two values on the stack are added (+), subtracted (-),
multiplied (*), divided (/), remaindered (%), or exponentiated (^).
The two entries are popped off the stack; the result is pushed on
the stack in their place. Any fractional part of an exponent is
ignored.

sx The top of the stack is popped and stored into a register named x ,
where x may be any character. If the s is capitalized, x is treated
as a stack and the value is pushed on it.

lx The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the l is capitalized,
register x is treated as a stack and its top value is popped onto the
main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains
unchanged. P interprets the top of the stack as an ASCII string,
removes it, and prints it.

f All values on the stack are printed.

q exits the program. If executing a string, the recursion level is
popped by two. If q is capitalized, the top value on the stack is
popped and the string execution level is popped by that value.

x treats the top element of the stack as a character string and
executes it as a string of dc commands.

X replaces the number on the top of the stack with its scale factor.

[...] puts the bracketed ASCII string onto the top of the stack.

< x > x = x The top two elements of the stack are popped and compared.
Register x is evaluated if they obey the stated relation.

v replaces the top element on the stack by its square root. Any
existing fractional part of the argument is taken into account, but
otherwise the scale factor is ignored.

235-700-200
November 1998

COMMANDS

DC(1)

Issue 7.00 See Warning in Section 1.1 Page dc-1

! interprets the rest of the line as a UTS system command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix
for further input.

I pushes the input base on the top of the stack.

o The top value on the stack is popped and used as the number radix
for further output.

O pushes the output base on the top of the stack.

k The top of the stack is popped, and that value is used as a
non-negative scale factor: the appropriate number of places are
printed on output, and maintained during multiplication, division,
and exponentiation. The interaction of scale factor, input base, and
output base will be reasonable if all are changed together.

z The stack level is pushed onto the stack.

Z replaces the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the
terminal) and executed.

; : are used for array operations.

EXAMPLE

This example prints the first ten values of n!:
[la1+dsa ∗pla10>y]sy

0sa1

lyx

DIAGNOSTICS

x is unimplemented
where x is an octal number.

stack empty for not enough elements on the stack to do what was asked.

Out of space
when the free list is exhausted (too many digits).

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

COMMANDS 235-700-200
November 1998

DC(1)

Page dc-2 See Warning in Section 1.1 Issue 7.00

NAME

dd — convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION

Dd copies the specified input file to the specified output with possible
conversions. The standard input and output are used by default. The input and
output block size may be specified to take advantage of raw physical I/O.

option values
if= file input file name; standard input is default
of= file output file name; standard output is default
ibs = n input block size n bytes (default 512)
obs = n output block size (default 512)
bs= n set both input and output block size,

superseding ibs and obs; also, if no conversion
is specified, it is particularly efficient since no
in-core copy need be done

cbs = n conversion buffer size
skip = n skip n "" input records before starting copy
seek= n seek n records from beginning of output file

before copying
count = n copy only n "" input records
conv =ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC

lcase map alphabetics to lowercase
ucase map alphabetics to uppercase
swab swap every pair of bytes

noerror do not stop processing on an erroc
sync pad every input record to ibs

... , ... several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end
with k, b , or w to specify multiplication by 1024, 512, or 2, respectively; a pair
of numbers may be separated by x to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified. In the former case, cbs
characters are placed into the conversion buffer, converted to ASCII, and
trailing blanks trimmed and new-line added before sending the line to the
output. In the latter case, ASCII characters are read into the conversion buffer,
converted to EBCDIC, and blanks added to make up an output record of size
cbs .

After completion, dd reports the number of whole and partial input and output
blocks.

235-700-200
November 1998

COMMANDS

DD(1)

Issue 7.00 See Warning in Section 1.1 Page dd-1

EXAMPLE

This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card
images per record into the ASCII file x:

dd if=/dev/mt00 of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/O on the raw physical
devices because it allows reading and writing in arbitrary record sizes.

SEE ALSO

cp(1)

DIAGNOSTICS

f+p records in(out) numbers of full and partial records
read(written)

BUGS

The ASCII/EBCDIC conversion tables are taken from the 256-character
standard in the CACM (Communications of the Association for Computing
Machinery) Nov, 1968. The ibm conversion, while less blessed as a standard,
corresponds better to certain IBM print train conventions. There is no universal
solution.

New lines are inserted only on conversion to ASCII; padding is done only on
conversion to EBCDIC. These should be separate options.

The magnetic tape (MT) unit driver program of the 3B20D has a bug in it that
does not permit files of certain sizes to be written. Specifically, if the file size is
(521*N)+1 (that is, 1, 513, 1025 ..., the driver fails to write out the last byte of
the file. This may or may not result in an error message.

This most commonly occurs when a file is being copied to tape by use of the "dd"
command as part of a non-official Lucent procedure.

This problem can be avoided by using the
COPY:TAPE:OUT

command to copy files to tape.

COMMANDS 235-700-200
November 1998

DD(1)

Page dd-2 See Warning in Section 1.1 Issue 7.00

NAME

df — report number of free disk blocks

SYNOPSIS
df [file-systems]

DESCRIPTION

Df prints out the number of free blocks available for on-line file systems by
examining the counts kept in the in-core super-blocks; file-systems may be
specified either by device name (for example, /dev/bwm) or by mounted
directory name (for example, /etc/bwm). If the file-systems argument is
unspecified, the free space on all of the mounted file systems is printed. Blocks
are reported as 512 byte blocks.

235-700-200
November 1998

COMMANDS

DF(1)

Issue 7.00 See Warning in Section 1.1 Page df-1

NAME

dgnnm — assign special diagnostic filename

SYNOPSIS
dgnnm unit-name unit-number

DESCRIPTION

Dgnnm creates and returns a block special device file name that it has assigned
to the unit specified in the command line.

The unit has been reserved for diagnostics when this program completes. After
use, it must be released by udgnnm.

FILES
/dev/ecd

/dgn/xxx

/temp/ecdxxxxxx

/tmp/xxx

SEE ALSO

udgnnm(1)

DIAGNOSTICS

Error numbers are returned. These numbers may be interpreted in
MOVEerrcod.h.

235-700-200
November 1998

COMMANDS

DGNNM(1)

Issue 7.00 See Warning in Section 1.1 Page dgnnm-1

NAME

diff — differential file comparator

SYNOPSIS
diff [-efbh] file1 file2

DESCRIPTION

Diff tells what lines must be changed in two files to bring them into agreement.
If file1 (file2) is -, the standard input is used. If file1 (file2) is a directory,
then a file in that directory with the name file2 (file1) is used. The normal
output contains lines of these forms:

n1 a n3,n4

n1,n2 d n3

n1,n2 c n3,n4

These lines resemble ed commands to convert file1 into file2. The numbers after the
letters pertain to file2. In fact, by exchanging a for d and reading backward one may
ascertain equally how to convert file2 into file1. As in ed, identical pairs where n1 =
n2 or n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file
flagged by <; then all the lines that are affected in the second file flagged by >.

The -b option causes trailing blanks (spaces and tabs) to be ignored and other
strings of blanks to compare equal.

The -e option produces a script of a, c, and d commands for the editor ed, which
will recreate file2 from file1. The -f option produces a similar script, not useful
with ed, in the opposite order. In connection with -e, the following shell program
may help maintain multiple versions of a file. Only an ancestral file ($1) and a
chain of version-to-version ed scripts ($2,$3,...) made by diff need be on hand. A
“latest version’’ appears on the standard output.

(shift; cat $*; echo ´1,$p´) | ed - $1

Except in rare circumstances, diff finds a smallest sufficient set of file differences.

Option -h does a fast, half-hearted job. It works only when changed stretches
are short and well separated, but does work on files of unlimited length.
Options -e and -f are unavailable with -h.

FILES

/tmp/d?????
/usr/lib/diffh for -h

SEE ALSO

cmp(1), ed(1)

235-700-200
November 1998

COMMANDS

DIFF(1)

Issue 7.00 See Warning in Section 1.1 Page diff-1

DIAGNOSTICS

Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

BUGS

Editing scripts produced under the -e or -f option are naive about creating lines
consisting of a single period (.).

COMMANDS 235-700-200
November 1998

DIFF(1)

Page diff-2 See Warning in Section 1.1 Issue 7.00

NAME

dirname

DESCRIPTION

See basename.

235-700-200
November 1998

COMMANDS

DIRNAME(1)

Issue 7.00 See Warning in Section 1.1 Page dirname-1

NAME

dlsum — “date-less” sum and block counts of a file

SYNOPSIS
dlsum [-r] file

DESCRIPTION

Dlsum calculates and prints a 16-bit checksum of the named file excluding the
time-date stamp and header version information. A file block count is also
printed. Dlsum is typically used to check the "object" content of a file regardless
of header and version time stamping.

SEE ALSO

sum(1)

DIAGNOSTICS

Read error is indistinguishable from end-of-file on most devices; check the block
counts.

235-700-200
November 1998

COMMANDS

DLSUM(1)

Issue 7.00 See Warning in Section 1.1 Page dlsum-1

NAME

du — summarize disk usage

SYNOPSIS
du [-ars] [names]

DESCRIPTION

Du gives the number of blocks contained in all files and (recursively) directories
within each directory and file specified by the names argument. The block count
includes the indirect blocks of the file. If names is missing, q is used.

The optional argument -s causes only the grand total (for each of the specified
names) to be given. The optional argument -a causes an entry to be generated
for each file. Absence of either causes an entry to be generated for each
directory only.

Du is normally silent about directories that cannot be read, files that cannot be
opened, etc. The -r option will cause du to generate messages in such instances.

A file with two or more links is only counted once.

BUGS

If the -a option is not used, nondirectories given as arguments are not listed.

If there are too many distinct linked files, du will count the excess files more
than once.

Files with holes in them will get an incorrect block count.

235-700-200
November 1998

COMMANDS

DU(1)

Issue 7.00 See Warning in Section 1.1 Page du-1

NAME

echo — echo arguments

SYNOPSIS
echo [arg] ...

DESCRIPTION

Echo writes its arguments separated by blanks and terminated by a new-line on
the standard output. It also understands C-like escape conventions; beware of
conflicts with the shell’s use of \:

\b backspace

\c print line without new-line

\f form-feed

\n new-line

\r carriage return

\t tab

\\ backslash

\n the 8-bit character whose ASCII code is the 1-, 2-, or 3-digit octal
numbern, which must start with a zero.

Echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

SEE

sh(1)

235-700-200
November 1998

COMMANDS

ECHO(1)

Issue 7.00 See Warning in Section 1.1 Page echo-1

NAME

ed, red — text editor

SYNOPSIS
ed[-] [file]
red [-] [file]

DESCRIPTION

Ed is the standard text editor. If the file argument is given, ed simulates an e
command (see below) on the named file; that is to say, the file is read into ed ’s
buffer so that it can be edited. The optional - suppresses the printing of
character counts by e , r , and w commands; of diagnostics from e and q
commands; and of the ! prompt after a ! shell command. Ed operates on a copy
of the file it is editing; changes made to the copy have no effect on the file until
a w (write) command is given. The copy of the text being edited resides in a
temporary file called the buffer . There is only one buffer.

Red is a restricted version of ed . It will only allow editing of files in the current
directory. It prohibits executing shell commands via ! shell command. Attempts
to bypass these restrictions result in an error message (restricted shell).

Both ed and red support a formatting capability. After including a format
specification as the first line of file and invoking ed with your terminal in "stty
-tabs or "stty tab3" mode [see stty (1)], the specified tab stops will automatically
be used when scanning file . For example, if the first line of a file contained:

<:t5,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line length of 72
would be imposed.

Note: While inputting text, tab characters when typed are expanded to every
eighth column as is the default.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command , possibly followed by
parameters to that command. These addresses specify one or more lines in the
buffer. Every command that requires addresses has default addresses, so that
the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow
the input of text. This text is placed in the appropriate place in the buffer.
While ed is accepting text, it is in input mode. In this mode, no commands are
recognized; all input is merely collected. Input mode is left by typing a period
(".″) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expressions
are used in addresses to specify lines and in some commands (for example, s) to
specify portions of a line that are to be substituted. A regular expression (RE)
specifies a set of character strings. A member of this set of strings is said to be
matched by the RE.

The REs allowed by ed are constructed as follows:

235-700-200
November 1998

COMMANDS

ED(1)

Issue 7.00 See Warning in Section 1.1 Page ed-1

The following 1-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2) is a
1-character RE that matches itself.

1.2 A backslash (\) followed by any special character is a 1-character
RE that matches the special character itself. The special characters
are:

a. ".″, *, [, and \ (period, asterisk, left-square bracket, and
backslash, respectively) which are always special,
except when they appear within square brackets ([] ;
see 1.4).

b. ^ (caret or circumflex) which is special at the
beginning of an entire RE (see 3.1 and 3.2), or when it
immediately follows the left of a pair of square
brackets ([]) (see 1.4).

c. $ (currency symbol) which is special at the end of an
entire RE (see 3.2).

d. The character used to bound (that is, delimit) an
entire RE, which is special for that RE [for example,
see how slash (/) is used in the g command, below].

1.3 A period (".″) is a 1-character RE that matches any character
except new line.

1.4 A nonempty string of characters enclosed in square brackets ([]) is
a 1-character RE that matches any one character in that string. If,
however, the first character of the string is a circumflex (^), the
1-character RE matches any character except new line and the
remaining characters in the string. The ^ has this special meaning
only if it occurs first in the string. The minus (-) may be used to
indicate a range of consecutive ASCII characters; for example, [0-9]
is equivalent to [0123456789] . The - loses this special meaning if it
occurs first (after an initial , if any) or last in the string. The
right-square bracket (]) does not terminate such a string when it is
the first character within it (after an initial , if any); for example,
[]a-f] matches either a right-square bracket (]) or one of the letters
a through f inclusive. The four characters listed in 1.2.a above
stand for themselves within such a string of characters.

The following rules may be used to construct REs from 1-character REs:

2.1 A 1-character RE is an RE that matches whatever the 1-character
RE matches.

2.2 A 1-character RE followed by an asterisk (*) is an RE that matches
zero or more occurrences of the 1-character RE. If there is any
choice, the longest leftmost string that permits a match is chosen.

2.3 A 1-character RE followed by \ { m \ } , \ { m,\ } , or \ { m,n \ } is an
RE that matches a range of occurrences of the 1-character RE. The
values of m and n must be nonnegative integers less than 256; \{ m
\ } matches exactly m occurrences; \ { m,\ } matches at least m
occurrences; \ { m,n \ } matches any number of occurrences between
m and n, inclusive.

COMMANDS 235-700-200
November 1998

ED(1)

Page ed-2 See Warning in Section 1.1 Issue 7.00

Whenever a choice exists, the RE matches as many occurrences as
possible.

2.4 The concatenation of REs is an RE that matches the concatenation
of the strings matched by each component of the RE.

2.5 An RE enclosed between the character sequences \ (and \) is an
RE that matches whatever the unadorned RE matches.

2.6 The expression n matches the same string of characters as was
matched by an expression enclosed between \(and \) earlier in the
same RE. Here n is a digit; the subexpression specified is that
beginning with the n th occurrence of \(counting from the left. For
example, the expression ^ (. *)\1 $ matches a line consisting of
two repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment or
final segment of a line (or both):

3.1 A circumflex (^) at the beginning of an entire RE constrains that
RE to match an initial segment of a line.

3.2 A currency symbol ($) at the end of an entire RE constrains that
RE to match a final segment of a line.

The construction ^entire\f RE$ constrains the entire RE to match the entire
line.

The null RE (for example, //) is equivalent to the last RE encountered. Also see
the last paragraph before FILES.

To understand addressing in ed it is necessary to know that at any time there is
a current line . Generally speaking, the current line is the last line affected by a
command; the exact effect on the current line is discussed under the description
of each command. Addresses are constructed as follows:

1. The character ".″ addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n th line of the buffer.

4. ´x addresses the line marked with the mark name character x , which must
be a lowercase letter. Lines are marked with the k command described
below.

5. An RE enclosed by slashes (/) addresses the first line found by searching
forward from the line following the current line toward the end of the
buffer and stopping at the first line containing a string matching the RE. If
necessary, the search wraps around to the beginning of the buffer and
continues up to and including the current line, so that the entire buffer is
searched. Also, read the last paragraph before FILES.

6. An RE enclosed in question marks (?) addresses the first line found by
searching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a string
matching the RE. If necessary, the search wraps around to the end of the
buffer and continues up to and including the current line. Also, read the
last paragraph before FILES.

235-700-200
November 1998

COMMANDS

ED(1)

Issue 7.00 See Warning in Section 1.1 Page ed-3

7. An address followed by a plus sign (+) or a minus sign (-) followed by a
decimal number specifies that address plus (respectively minus) the
indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken with
respect to the current line, for example, -5 is understood to mean ".-5."

9. If an address ends with + or -, then 1 is added to or subtracted from the
address, respectively. As a consequence of this rule and of rule 8, the
address - refers to the line preceding the current line. (To maintain
compatibility with earlier versions of the editor, the character in addresses
is entirely equivalent to -.) Moreover, trailing + and - characters have a
cumulative effect, so –– refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a
semicolon (;) stands for the pair " .,$."

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept
one or two addresses assume default addresses when an insufficient number of
addresses is given; if more addresses are given than such a command requires,
the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). Also, they
may be separated by a semicolon (;). In the latter case, the current line (".″) is
set to the first address, and only then is the second address calculated. This
feature can be used to determine the starting line for forward and backward
searches (see rules 5. and 6.). The second address of any 2-address sequence
must correspond to a line that follows, in the buffer, the line corresponding to
the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that the
given addresses are the default.

It is generally illegal for more than one command to appear on a line. However,
any command (except e, f, r, or w) may be suffixed by l, n, or p. In which case,
the current line is either listed, numbered or printed, respectively, as discussed
below under the l, n, and p commands.

(.)a <text> . The append command reads the given text and appends it after the
addressed line; " .″ is left at the last inserted line, or, if there were
none, at the addressed line. Address 0 is legal for this command; it
causes the ‘‘appended’’ text to be placed at the beginning of the
buffer. The maximum number of characters that may be entered
from a terminal is 256 per line (including the new-line character).

(.)c <text> . The change command deletes the addressed lines and then accepts
input text that replaces these lines. The ".″ is left at the last line
input, or, if there were none, at the first line that was not deleted.

(.,.)d The delete command deletes the addressed lines from the buffer.
The line after the last line deleted becomes the current line; if the
lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

e file Theedit command causes the entire contents of the buffer to be

COMMANDS 235-700-200
November 1998

ED(1)

Page ed-4 See Warning in Section 1.1 Issue 7.00

deleted and then the named file to be read in. The ".″ is set to the
last line of the buffer. If no file name is given, the currently
remembered file name, if any, is used (see the f command). The
number of characters read is typed;file is remembered for possible
use as a default file name in subsequent e, r, and w commands. If
file is replaced by !, the rest of the line is taken to be a shell [sh(1)]
command whose output is to be read. Such a shell command isnot
remembered as the current file name. SeeDIAGNOSTICS .

E file TheEdit command is likee, except that the editor does not check to
see if any changes have been made to the buffer since the lastw
command.

f file If file is given, thefile-name command changes the currently
remembered file name tofile; otherwise, it prints the currently
remembered file name.

(1,$)g/RE/command list
In theglobal command, the first step is to mark every line that
matches the given RE. Then, for every such line, the
givencommand list is executed with ".″ initially set to that line. A
single command or the first of a list of commands appears on the
same line as the global command. All lines of a multiline list except
the last line must be ended with a e; a, i, and c commands and
associated input are permitted; the " .″ terminating input mode
may be omitted if it would be the last line of thecommand list. An
emptycommand list is equivalent to the p command. The g , G, v ,
and V commands arenot permitted in the command list. See
alsoBUGS and the last paragraph beforeFILES.

(1,$)G/RE/ In the interactiveGlobal command, the first step is to mark every
line that matches the given RE. Then, for every such line, that line
is printed, the ".″ is changed to that line, and anyone command
(other than one of thea, c, i, g, G , v, and V commands) may be
input and is executed.

After the execution of that command, the next marked line is printed, and so
on; a new line acts as a null command; an & causes the most recent command
to be executed again within the current invocation of G. Note that the
commands input as part of the execution of the G command may address and
affect any lines in the buffer. TheG command can be terminated by an interrupt
signal (ASCII DEL or BREAK).

h Thehelp command gives a short error message that explains the
reason for the most recent ? diagnostic.

H TheHelp command causesed to enter a mode in which error
messages are printed for all subsequent ? diagnostics. It will also
explain the previous ? if there was one. TheH command alternately
turns this mode on and off; it is initially off.

(.)i <text> . Theinsert command inserts the given text before the addressed
line; ".″ is left at the last inserted line, or, if there were none, at the
addressed line. This command differs from thea command only in
the placement of the input text. Address 0 is not legal for this
command. The maximum number of characters that may be
entered from a terminal is 256 per line (including the new-line
character).

235-700-200
November 1998

COMMANDS

ED(1)

Issue 7.00 See Warning in Section 1.1 Page ed-5

(.,.+1)j Thejoin command joins contiguous lines by removing the
appropriate new-line characters. If exactly one address is given,
this command does nothing.

(.)kx The mark command marks the addressed line with namex , which
must be a lowercase letter. The address ´x then addresses this line;
".″ is unchanged.

(.,.)l Thelist command prints the addressed lines in an unambiguous
way: a few nonprinting characters (for example, tab, backspace) are
represented by (hopefully) mnemonic overstrikes, all other
non-printing characters are printed in octal, and long lines are
folded. An l command may be appended to any other command
other than e, f, r , or w.

(.,.)ma Themove command repositions the addressed line(s) after the line
addressed bya. Address 0 is legal fora and causes the addressed
line(s) to be moved to the beginning of the file; it is an error if
addressa falls within the range of moved lines; ".″ is left at the last
line moved.

(.,.)n Thenumber command prints the addressed lines, preceding each
line by its line number and a tab character; ".″ is left at the last
line printed. Then command may be appended to any other
command other thane, f, r, or w.

(.,.)p Theprint command prints the addressed lines; "." is left at the last
line printed. The p command may be appended to any other
command other thane, f, r, or w; for example, dp deletes the
current line and prints the new current line.

P The editor will prompt with a* for all subsequent commands. TheP
command alternately turns this mode on and off; it is initially off.

q Thequit command causesed to exit. No automatic write of a file is
done (but seeDIAGNOSTICS).

Q The editor exits without checking if changes have been made in the
buffer since the lastw command.

($)r file Theread command reads in the given file after the addressed line.
If no file name is given, the currently remembered file name, if
any, is used (see e and f commands). The currently remembered file
name isnot changed unlessfile is the very first file name mentioned
sinceed was invoked. Address 0 is legal for r and causes the file to
be read at the beginning of the buffer. If the read is successful, the
number of characters read is typed; the ".″ is set to the last line
read in. If file is replaced by !, the rest of the line is taken to be a
shell [sh(1)] command whose output is to be read. For example, "$r
!ls" appends current directory to the end of the file being edited.
Such a shell command isnot remembered as the current file name.

(.,.)s/RE/replacement/ or
(.,.)s/RE/replacement/g
Thesubstitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a match is
found, all (nonoverlapped) matched strings are replaced by the
replacement if the global replacement indicator g appears after the
command. If the global indicator does not appear, only the first
occurrence of the matched string is replaced. It is an error for the
substitution to fail onall addressed lines. Any character other than

COMMANDS 235-700-200
November 1998

ED(1)

Page ed-6 See Warning in Section 1.1 Issue 7.00

space or new line may be used instead of / to delimit the RE and
the replacement; ".″ is left at the last line on which a substitution
occurred. See also the last paragraph beforeFILES.

An ampersand (&) appearing in thereplacement is replaced by the
string matching the RE on the current line. The special meaning of
& in this context may be suppressed by preceding it by \. As a
more general feature, the characters \n, wheren is a digit, are
replaced by the text matched by then the regular subexpression of
the specified RE enclosed between \(and \). When nested
parenthesized subexpressions are present,n is determined by
counting occurrences of \(starting from the left. When the
character % is the only character in thereplacement, the
replacement used in the most recent substitute command is used as
thereplacement in the current substitute command. The % loses its
special meaning when it is in a replacement string of more than
one character or is preceded by a \.

A line may be split by substituting a new-line character into it. The
new line in thereplacement must be escaped by preceding it by [] .
Such substitution cannot be done as part of ag orv command list.

(.,.)ta This command acts just like the m command, except that acopy of
the addressed lines is placed after addressa (which may be 0); ".″ is
left at the last line of the copy.

u The undo command nullifies the effect of the most recent command
that modified anything in the buffer, namely the most recent a, c,
d, g , i, j,m, r, s, t, v , G, or V command.

(1,$)v/RE/command list
This command is the same as the global commandg except that
thecommand list is executed with " .″ initially set to every line that
doesnot match the RE.

(1,$)V/RE/ This command is the same as the interactive global commandG
except that the lines that are marked during the first step are
those that donot match the RE.

(1,$)wfile The write command writes the addressed lines into the named file.
If the file does not exist, it is created with mode 666 (readable and
writable by everyone), unless yourumask setting [see sh (1)]
dictates otherwise. The currently remembered file name is not
changed unlessfile is the very first file name mentioned sinceed
was invoked. If no file name is given, the currently remembered
file name, if any, is used (see e and f commands); the ".″ is
unchanged. If the command is successful, the number of characters
written is typed. Iffile is replaced by !, the rest of the line is taken
to be a shell [sh(1)] command whose standard input is the
addressed lines. Such a shell command isnot remembered as the
current file name.

($)= The line number of the addressed line is typed; the ".″ is
unchanged by this command.

!shell command
The remainder of the line after the ! is sent to the UNIX system
shell [sh(1)] to be interpreted as a command. Within the text of
that command, the unescaped character% is replaced with the

235-700-200
November 1998

COMMANDS

ED(1)

Issue 7.00 See Warning in Section 1.1 Page ed-7

remembered file name; if a! appears as the first character of the
shell command, it is replaced with the text of the previous shell
command. Thus,!! will repeat the last shell command. If any
expansion is performed, the expanded line is echoed; ".″ is
unchanged.

(.+1)<new line >
An address alone on a line causes the addressed line to be printed.
A new line alone is equivalent to ".+1p ;" it is useful for stepping
forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns
toits command level.

Some size limitations: 512 characters per line, 256 characters per global
command list, 64 characters per file name, and 128K characters in the buffer.
The limit on the number of lines depends on the amount of user memory: each
line takes one word.

When reading a file,ed discards ASCII NUL characters and all characters after
the last new line. Files (for example,a.out) that contain characters not in the
ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of an RE or of a replacement string (for example, /)
would be the last character before a new line, that delimiter may be omitted, in
which case the addressed line is printed. The following pairs of commands are
equivalent:

s/s1/s2 s/s1/s2/p
g/s1 g/s1/p
?s1 ?s1?

FILES

/tmp/e# temporary; # is the process number.
ed.hup work is saved here if the terminal is hung up.

DIAGNOSTICS

? for command errors.
? file for an inaccessible file.

(use the help and Help commands for detailed
explanations).

If changes have been made in the buffer since the last w command that wrote
the entire buffer, ed warns the user if an attempt is made to destroy ed ’s buffer
via thee orq commands; it prints? and allows one to continue editing. A seconde
orq command at this point will take effect. The - command-line option inhibits
this feature.

COMMANDS 235-700-200
November 1998

ED(1)

Page ed-8 See Warning in Section 1.1 Issue 7.00

SEE ALSO

grep(1), sed(1), sh(1), stty(1)

CAVEATS AND BUGS

A! command cannot be subject to ag or av command.

The! command and the ! escape from thee , r, and w commands cannot be used
if the editor is invoked from a restricted shell [see sh(1)].

The sequence \n in an RE does not match a new-line character.

Thel command mishandles DEL.

Characters are masked to 7 bits on input.

235-700-200
November 1998

COMMANDS

ED(1)

Issue 7.00 See Warning in Section 1.1 Page ed-9

NAME

edobj — object file editor

SYNOPSIS
edobj [object[s]]

DESCRIPTION

Edobj is a COFF (Common Object File Format) file dumper and editor. Edobj
performs three separate functions. It is an interactive dumper used for dumping
file header, section header, optional header, relocation, line number, and symbol
table information. It is an overwriter used for overwriting the actual
hexidecimal values in the file with new values. It is a file editor used to change
and update the values in the file header, section header, optional header,
relocation, line number, and symbol table information.

One or more COFF files may be specified on the command line. The interactive
dumper is entered by executing the edobj command. It provides the ability to
dump out any portion of the COFF file in a readable format. The overwriter is
accessible through the interactive dumper by executing the O command. The
file editor is entered from the interactive dumper by executing the E command.
The interactive dumper options are:

! <command>
The UNIX system command is to be executed.

? The status of global variables is output.

a <symbol> All of the occurrences of symbol are searched for in the symbol
table and output.

b [number] The number base is reset. If number is not specified, then the input
number base is reset to the C standard. Number can be 8 for octal,
10 for decimal, and 16 for hexidecimal.

c The current archive member is closed. The next archive member is
opened.

d <sclass> Sclass is a storage class. All of the symbols in the symbol table
with the desired storage class are dumped out.

e <type> All of the symbol table entries of a given type are output.

E The object file editor is entered.

F <filename>
A search is performed to see if filename is a source file of the
current object file.

f [ofilename]
The file header information is output. If an existing object file,
ofilename, is specified, it becomes the currently opened file. Its file
header information is then output.

g The current object file is closed, and the next file specified on the
command line is opened. If the current file is the only or last file
specified on the command line, then the current file remains open.

h [section] [secndx] [*]
This command dumps out section header information. A "*" dumps

235-700-200
November 1998

COMMANDS

EDOBJ(1)

Issue 7.00 See Warning in Section 1.1 Page edobj-1

all of the section header information in the current file. A
particular section header is output by specifying a section name,
section or a section index number, secndx. If no specifications are
made, the last section header specified will be output.

l [function] [symndx] [*]
Line number information is output. A "*" outputs all the line
number entries. When a function is specified, the information for
that function is output. If a symbol index is given, symndx, the line
number information for the referenced symbol index is output.
When the l command alone is given, the line number information
for the last function specified will be output.

m [mcommand]
The command line menu is output. If a particular command is
specified, only the menu information for that particular command
is output.

n [count] The symbol table information for the next count symbols is
produced. If count is not specified it is assumed to be one.

o [a] [o] [p] If no additional information is specified, then the entire optional
header and patch list is dumped out. If a is specified, then the
a.out header is output. o specifies the a.out with a library or pfile
header. The patch list alone is specified by p.

O [address] [symbol [’line]]
The overwriter used to overwrite binary information in the object
file is invoked. When specified, the overwriter will start at the
given address, or at the address of the given symbol. If symbol is a
function name, and line is an actual line number within that
function, the overwriter can be specified to start at the address of a
given line within a function.

r [section] [secndx] [*]
With the "*", all relocation information is dumped out. A specified
section, dumps out the relocation information for a particular
section. Secndx, a symbol index, outputs the relocation information
for the referenced symbol index. If the r command alone is
executed, the relocation information for the last specified section is
output.

s [section [start][:end]]
Raw section data is dumped out. A section can be specified to
output the raw data of a particular section. A range of section data
can be specified. If a section is not specified, then the raw section
data for the last specified section will be dumped out.

t [symbol [symbol]] [symndx [symndx]] [*]
The symbol table information is output. If no options are specified,
then the information for the last specified symbol is output. A "*"
outputs all symbol table entries. Symbol is used to specify a
particular symbol. A range of information, from one symbol to
another may be output by specifying two symbols or symbol
indexes, symndx .

v [symbol [type]] [symndx [type]]
The value of a particular symbol is output. If symbol is specified,

COMMANDS 235-700-200
November 1998

EDOBJ(1)

Page edobj-2 See Warning in Section 1.1 Issue 7.00

then the value of the named entry is output. A type may be
specified. The v command alone will output the value of the last
symbol specified.

V The version of edobj executing is printed along with the dmert
generic object format it operates on.

q The edobj session is terminated.

The overwriter provides the ability to make changes to the currently opened
object file by overwriting the binary information in the file with new values.
The overwrites can only be performed on codes found within sections. The
overwriter commands are:

\n The next 16 bytes after the current line are displayed.

- The previous 16 bytes before the current output line are displayed.

! <command>
The UNIX system command is executed.

? The status and content of certain global variables are output.

m The program menu of the overwriter is listed.

o <[address] [symbol [’line]]>
Change the current address to address , and then output 16 bytes
starting at the new address position. If a symbol is specified, the
current address is changed to the start of the symbol, and the 16
bytes are displayed. If symbol is a function name and line is an
actual line number within that function, the current address is
changed to the location of the line within the function and the 16
bytes are displayed.

s <[hexnumber] [’char]>
A pattern is searched for starting at the current address. The
pattern is made up of hexidecimal numbers or their character
equivalent. If the pattern is found, the file pointer points to the
start of the found pattern. The 16 bytes starting at this position
are listed out. In each search, one byte of information must be
specified. A hexidecimal value being searched for must start at the
first half of a byte.

u This command will undo the last change made to the file.

hexnumber A hexnumber can be any hexidecimal number. These hexidecimal
numbers will replace any of the displayed 16 bytes starting at the
current address location. The desired changes are entered directly
under the hexidecimal values to be changed. If a hexidecimal value
is overwritten with a single space, ’ ’, the old value remains
unchanged. At most, 16 bytes can be changed at any one time.

\tcharacters The tab specifies the use of characters. The input characters will
replace the displayed characters and the hexidecimal
representation of the characters within the object file. The
replacement starts at the current address position. At most, 16
characters can be changed at any one time. If the user does not
wish to overwrite a particular character, the character ’.’ is used to
bypass the overwrite of that character.

q The overwriter is exited, and control is turned back to the main
portion of edobj.

235-700-200
November 1998

COMMANDS

EDOBJ(1)

Issue 7.00 See Warning in Section 1.1 Page edobj-3

The file editor portion of edobj provides the capability of making quick and easy
changes to the COFF headers, relocation information, line number information,
and symbol table entries. The portion of the COFF file to change is specified.
The changes are then prompted for. The time/date stamp in the file header is
the only noneditable portion of the COFF file. The file editing commands are:

! <command>
The UNIX system command is to be executed.

f The current file header is edited.

o [otype] The optional file header is edited. The otype is a for an a.out
header. It is l for a library header. It is h for a pfile header. The
patch list is specified by p . A u specifies an update header. A q
specifies a qfile header.

h [[sectnum] [sectname]]
Editing is performed on a section header of the current file. The
section number, sectnum , or the name of the section, sectname ,
must be specified to determine which particular section header to
edit.

l [[symndx] [functname]]
Editing is performed on line number entries. The function the
change is made in can be specified by its symbol table index,
symndx , or the function name, functname . The actual line entry
to edit in the section is prompted for.

m A menu of the available commands is output.

r [[sectnum] [sectname]]
A relocation entry in the current file is edited. The section which
contains the relocation entry can be specified by sectname , the
name of the current section, or sectnum , the number of the section.
The individual relocation entry to be changed is prompted for.

s [[sindex] [sname]]
An entry in the symbol table is edited. The symbol table index,
sindex , or symbol name, sname , of the entry to change must be
specified.

V The version of edobj executing is printed along with the dmert
generic object format it operates on.

q The object file editing is terminated. Control is returned to the
main portion of edobj.

CAVEATS

The tool cannot distinguish between a qfile optional header and an update
optional header. The user must know if he or she has a qfile or an update
optional header.

When searching for a section header or symbol name, if more than one entry
exists with that name, the first section header or symbol table entry with that
name will always be retrieved.

A break executed in the file editing portion of edobj will terminate edobj.

COMMANDS 235-700-200
November 1998

EDOBJ(1)

Page edobj-4 See Warning in Section 1.1 Issue 7.00

Editing changes which expand or contract the COFF file will have side effects
on other portions of the COFF file. Theses types of changes should be avoided.

235-700-200
November 1998

COMMANDS

EDOBJ(1)

Issue 7.00 See Warning in Section 1.1 Page edobj-5

NAME

EMACS — interactive screen editor

SYNOPSIS
emacs [-l init_file] [+line_number] [file]

DESCRIPTION

EMACS is an interactive screen editor which can be used to construct and edit
files on the UNIX system. A window of text from the file being edited is
displayed on the terminal screen, along with a status line describing the editor
version and file being edited. Ordinary characters typed are inserted in the file,
while escape sequences and control characters are used to invoke editing
functions. Several files can be edited at the same time in different editing
buffers, and two of the active buffers can be displayed on the same screen.

If given a file argument, EMACS reads the file into the buffer "Main".
Otherwise, an empty buffer is created. If a line_number is given, EMACS moves
to that line number in the specified file. If an init_file is specified, EMACS will
treat the contents of that file as EMACS commands to be executed on startup.
EMACS also looks in your home directory for a file named .emacs_init and
interprets commands from it before those in the specified init_file are executed.
This option can also be specified with .i, in which case it suppresses the
processing of .emacs_init. If an .emacs_init does not exist, EMACS looks in the
EMACS library directory (see below) for a standard .emacs_init.

EMACS can be customized by the user through user-defined macro commands,
which can redefine the effect of the basic editing commands. EMACS has a
number of built in editing modes that customize some of the commands to
support editing of particular types of files, such as C source programs or word
processing source documents.

There are a number of self-help features in EMACS to aid in learning how to
use the editor. Complete documentation appears in Tab 4 (EMACS Description).

MISCELLANEOUS CONVENTS

EMACS treats the following characters specially in filenames:

$NAME Substitute the environment variable NAME

-USER Substitute the home directory of USER.

-EMACS Specifies the EMACS library directory. (contains standard macros,
etc.)

*,? Can be used for matching in partially specified filenames.

‘COMMAND‘
Substitute the output of running COMMAND.

^X Control-X, where X is any character. These characters are input by
holding down the control key and another key simultaneously on
your terminal. EMACS also provides a special mode (controlify) to
allow you to input control characters that your terminal cannot
send to your system (see the discussion of modes).

235-700-200
November 1998

COMMANDS

EMACS(1)

Issue 7.00 See Warning in Section 1.1 Page emacs-1

{,[Used as they are with the shell. EMACS uses the following
notation to display and input nonprinting characters:

Some of the control characters displayed are not very intuitive:

Some of the control characters displayed are not very intuitive:

^? Rubout

^[Excape

^] Control-right-bracket

^\ Control-backslash

^_ Control underline

^@ Null

^H Backspace (Displays as ^H when backspace mode is off, see below)

^I Tab (Displays as a ^I when notabs mode is on)

^J Newline (Displays as ^J in searches)

^M Carriage return

M-x Meta-x, where x is any character (including a control character).
Meta characters are entered by typing escape followed by another
character.

Many EMACS commands take an optional numeric argument. The argument
for a command precedes the command itself, and can be specified a number of
ways. Typing ^U specifies an argument of 4, or 4 times the current argument.
Typing escape followed by a sequence of digits with or without a leading ’-’
specifies a decimal value. Some examples:

^U^U^N Go forward 16 lines

M-123^N Go forward 123 lines

M––12^N Go forward -12 lines (goes back 12 lines).

Some EMACS commands prompt for a string parameter, such as a file name.
Some of the normal EMACS commands can be used to edit the parameter while
it is being entered. These include: ^F,^B,^D,^H,^A,^E,^K,^U. In addition,
typing your kill character (usually @) deletes the string, typing ^X substitutes
the contents of the current line in the buffer, and ^Y substitutes the current file
name. (The latter is a very convenient way of finding files with similar names.)
Typing ^V while typing a string will cause EMACS to expand any shell meta
characters ($,*,?,etc.) in the string and show the first candidate in the result. If
there is more than one expansion (e.g., foo.c and bar.c for *.c), ^N and ^P will
allow you to move backwards or forwards in them.

REGULAR EXPRESSIONS

EMACS uses an extension of the regular expression syntax used by ed(1) and
grep (1) for regular expression searches and query replace. The following
character sequences have special meaning:

. Matches any single character except newline.

[xyz] Matches one character among the set enclosed in brackets. (If the

COMMANDS 235-700-200
November 1998

EMACS(1)

Page emacs-2 See Warning in Section 1.1 Issue 7.00

first character is ^, it matches all but the specified characters.) If a
’-’ appears in the brackets, it designates a range of character values
(i.e. [a-ez] is equivalent to [abcdez]). The sequence \n can be used
to specify a newline as one of the alternatives.

* Matches 0 or more of the preceding expression (a single character,
specified as such or * or [])

+ Matches 1 or more of the preceding expression

\{x,y\} Matches x through y occurrences of the preceding expression. If y
is omitted, it defaults to 255. If x is omitted it defaults to 0.

\(expr\) Matches expr, and saves the text so matches for later reference.

\(ex1\|ex2\) Matches expression ex1 or ex2 and saves the text matched for later
reference. Note that any number of alternative expressions can be
separated by \ |. This expression cannot be followed by ’*’, ’+’, or a
range to specify multiple matches.

\< Matches 0 characters at the beginning of a word.

\> Matches 0 characters at the end of a word.

^ Matches 0 characters at the beginning of a line

$ Matches 0 characters at the end of a line.

\n Matches on newline at end of a line.

The following special sequences apply in the strings to replace with in query
replace.

& Specifies the entire string matched by the from string.

% Specifies the previous To string.

\n Specifies the string matched by the nth occurrence of \(expr\)
(Regular expression replace only).

^J or \n Specifies a newline is to be inserted at this point.

COMMAND SUMMARY

The following chart summarizes the available commands by category. Some
commands appear in more than one category. Commands that are marked with
’*’ take a numeric argument that indicates how many times to do the command.
Commands that are marked with ’+’ take a numeric argument that changes the
behavior of the command in some other way.

General Commands

^G Quit (Stops commands that prompt for things)

^Z Exit one level (Usually exits EMACS)

^X^C Exit EMACS

M-u Undo. Undoes the result of the last modification

M-? Help - Prompts for a command and displays its function.

M-w Put a wall chart of command explanations in the current buffer

^L Refresh the screen. (Argument indicates where to put the current
line)

235-700-200
November 1998

COMMANDS

EMACS(1)

Issue 7.00 See Warning in Section 1.1 Page emacs-3

Character Oriented Commands

^F Move forward one character

^B Move backward one character

^D Delete the character under the cursor

^H,^? Delete the previous character

^T Transpose the current and next character, move forward.

^C Capitalize the current character

Word Oriented Commands

M-f Move forward one word

M-b Move backward one word

M-d Delete forward one word

M-^?,M-^h Delete backwards one word

M-c Capitalize the next word

M-_ Underline the next word

M-a Move to the beginning of the sentence

M-e Move to the end of the sentence

Line Oriented Commands

^A Move to beginning of line

^E Move to end of line

^M-< Move to beginning of file

^M-> Move to end of file

^P Move back one line

^N Move forward one line

M-g Go to the line specified by the argument

^O Create a blank line in front of the cursor

^J,^M Make a new line (Just moves through empty lines).

^K Kill (delete) to the end of line (with argument, kills whole lines)

Delete Commands

^D Delete the character under the cursor

^H,^? Delete the previous character

M-d Delete forward one word

M-^?,M-^h Delete backwards one word

^K Kill (delete) to the end of line (with argument, kills whole lines)

^W Delete the marked region (argument specifies a mark number)

^Y Restore the last deletion (sets mark in front of it).

COMMANDS 235-700-200
November 1998

EMACS(1)

Page emacs-4 See Warning in Section 1.1 Issue 7.00

M-Y Replace the marked region with the previous deletion (Use only
immediately ofter ^Y)

Display Commands

^L Redraw the screen

^V Display the next page

M-v Display the previous page

M-< Move to beginning of file

M-> Move to end of file

M-^L Redraw with the current line at the top of the screen

Buffer Commands

(Most prompt for a buffer name, entering return gets a list of active buffers).

^X^B Change working buffer

^X^F Find file (does change buffer if file is in one, creates a new buffer
and reads the file if not).

^X^K Kill buffer

^X^N Change buffer name (with argument, changes file name)

^X^T Send region to buffer

^X= Display statistics on buffer

^X2 Enter two window mode (prompts for buffer name for second
window)

^X1 Make current window the only window

^X^O Switch windows.

File Commands

^X^R Read file into current buffer (with an argument, inserts the file at
the current position)

^X^W Write buffer to file (With an argument, appends to the file)

^X^S Save current buffer into current file.

^X^F Find file (does change buffer if file is in one, creates a new buffer
and reads the file if not).

^X^N Change buffer name (with argument, changes file name)

^X^L Load macros from file. (With an argument, undefines all previously
defined macros.)

Region Commands

M- (Meta space) Set mark at position (argument is the mark number)

^X^X Exchange mark and cursor position (argument is the mark
number)

^W Delete the region and put it on the kill stack

M-p Put the marked region in the kill stack without deleting it.

235-700-200
November 1998

COMMANDS

EMACS(1)

Issue 7.00 See Warning in Section 1.1 Page emacs-5

Search and Replace Commands

(All prompt for search and replace strings.)

^S,^R Forward and reverse incremental search. (Both display the string
currently matched. ^S moves to next occurrence, ^R moves to
previous occurrence. ^H deletes last character, ^G quits search,
escape exits search at currently displayed position. See below on
regular expression search.

M-^S Regular expression search. (waits for whole expression to be typed).
^S following M-^S goes to next occurrence.

M-r,M-^R Ordinary and regular expression query replace. (Prompts at each
occurrence of from string for the following:

y Replace with "to" string and move on.

n Do not replace this occurrence and move on.

r Replace all of the rest, showing each replacement.

R Replace the rest silently

p Move to previous occurrence of from string.

. Replace this one and stop

< Go back to the last replacement and stop

^G Quit query replace

<escape> Prompt for new to string, and replace this occurrence
with it.

Window Commands

^X2 Enter two window mode (prompts for buffer name for second
window)

^X1 Make current window the only window

^X^O Switch windows.

^X^^ Make current window grow by one line.

Special Input Commands

^Q Takes the next input character and inserts it, even if it is a control
character

M-Q Takes the next input character, makes it a meta character, and
inserts it.

M-\ Converts it’s argument to an ascii character and inserts it.

Interaction with UNIX

M-! Prompt for a UNIX command and execute it (with an argument,
passes the buffer as standard input.

M-$ Execute UNIX command, put output in buffer .exec

^X^D Change working directory

M-^M Send the current buffer as mail. (Lines starting To: or Cc: are
taken as destinations.)

COMMANDS 235-700-200
November 1998

EMACS(1)

Page emacs-6 See Warning in Section 1.1 Issue 7.00

Miscellaneous Commands

^X^M Specifies modes (See below)

M-s Prints EMACS statistics

M- Re-adjusts line boundaries in the whole buffer to fill lines evenly.
(With an argument, it works only on the current region.

M-/ Start a C comment.

MODES

Mode parameters allow you to customize the behavior of certain commands.
Some modes are switches, indicating only that something is either off or on,
while others are numeric parameters. Modes can be set by the ^X^M command.
Typing ^X^M followed by the name of a switch mode turns it on, typing
^U^X^M followed by the name turns it off. To set numeric modes, give the
value you want as an argument to ^X^M. (i.e. M-500^X^Msave). Modes can be
set automatically by putting ^X^M commands in your .emacs_init. Modes can
also be attached to a file by putting the string "EMACS_MODES: " followed by
a list of mode settings in the first 10 lines of the file. (The mode settings can be
preceded or followed by anything, to allow you to make them look like a
comment to other software processing the file.) The mode settings are separated
by commas and can be of the following form:

modename Set this switch mode

!modename Turn this switch mode off

modename=x
Set this numeric parameter to x.

The following indicates the modes and their default settings. Switches are listed
as either ON or OFF, while numeric parameters have specified values. Note
that the system default .emacs_init may alter these settings on your local
machine.

save (OFF) Automatically saves each buffer after savetype characters of
input or when you change buffers or run commands

savetype (256) Number of characters between automatic saves

mailtype (100) Number of characters between checks for new mail

c (OFF) Automatically indents during typing for C programs

verbose (ON) provides prompts for meta and control-x commands.

fill (ON) Automatically replaces a space with a newline when you type
past the end of line or past fillcol characters.

fillcol (72) column beyond which lines are wrapped.

eofnl (ON) Causes a newline to be appended to any file that doesn’t end
in one.

end_newline
(OFF) Causes attempts to move beyond the end of the file to add
newlines.

keepscroll (0) Number of lines kept from previous screen during ^V and M-v

235-700-200
November 1998

COMMANDS

EMACS(1)

Issue 7.00 See Warning in Section 1.1 Page emacs-7

smoothscroll
(OFF) Updates display via scrolling instead of jumping

readonly (OFF) Prevents saving the current buffer

picture (OFF) Enables 2-dimensional editing (See the manual)

tabstop (8) Width of a tab character

overwrite (OFF) Causes input to replace characters already there, rather
than insert.

nodelete (OFF) Causes deletions to replace the characters with whitespace
rather than deleting them.

rigid_newline
(OFF) Causes newline to always insert a new line, even if the next
line is empty.

notabs (OFF) Causes tabs to be expanded to spaces on input, and tabs in
files to display as ^I

comcol (40) Column where the M-/ commands starts a comment.

backspace (?) Causes backspaces to appear as cursor motion, not ^H. This
mode is set ON if your terminal handles underscored characters,
OFF otherwise.

nobell (OFF) Causes EMACS not to ring the terminal bell on an error

caseless (OFF) Causes all searches to ignore upper/lower case distinctions

usilent (OFF) Causes output from UNIX commands run from EMACS to
be discarded.

noecho (OFF) Causes output from M-$ commands not to be echoed.

controlify (OFF) Causes a sequence of ctl_char followed by another character
to translate into the second character made a control character.

ctl_char (30) Prefix for controlify (This is an integer specifying the ascii code
of the character, the default is ^^.

lnumb (ON) Displays line numbers

lnowid (4) Width of line numbers.

time (OFF) Displays a clock

display_percent
(OFF) Displays current position as a percentage of the whole file.

flow_lim (0) If non-zero, flow control will be enabled whenever flow_lim
characters are sent to the terminal in a burst.

height (?) Height of screen area for buffer display (set automatically)

width (?) Width of screen

tspeed (?) Describes your terminal to host speed.

autoload (ON) Automatically loads macros when first referenced.

leftmargin (0) In picture mode, this is the number of characters to the left of
the screen.

display_euc
(?) Determines whether characters with the high order bit are

COMMANDS 235-700-200
November 1998

EMACS(1)

Page emacs-8 See Warning in Section 1.1 Issue 7.00

considered extended ASCII or EMACS meta-characters. (Set on if
your terminal will display them)

ENVIRONMENT

The variable MAIL is the file name that EMACS looks at for newly arrived
mail. If your mail is forwarded to some other system, MAIL should not be
exported. The environment variable MAILER optionally specifies the name of a
mail command to use for sending mail. The environment variable SHELL
specifies the shell to use to execute shell commands. If the environment variable
TEMP4EMACS is set it is taken as the pathname of a directory in which
EMACS should place it’s temporary files.

FILES
$HOME/.emacs_init

EMACS/.emacs_init

$HOME/emacs[0-11]

EMACS/macros

EMACS/terminals

EMACS/helpfile

EMACS/errfile

The .emacs_init files, if present, contain a standard set of initializations to be
made when you start EMACS. The characters in the file will be interpreted as if
you had entered them as commands from your terminal. The most common
application of this is to set modes different from the default modes.

When EMACS is killed by an internal error, the kill (1) command, or by hanging
up during an editing session, it saves your buffers in the files emacs0-emacs11
in your home directory. You will receive mail (1) notifying you of what buffers
were saved.

The directory EMACS is the EMACS library, the location of which depends on
your local installation. Pathnames starting with EMACS will be translated to
the local path of this directory by EMACS (but not by other tools).
EMACS/macros may contain macro packages that can be loaded.
EMACS/terminals contains terminal information for EMACS. The other two
files contain internal data for EMACS.

235-700-200
November 1998

COMMANDS

EMACS(1)

Issue 7.00 See Warning in Section 1.1 Page emacs-9

NAME

ENV — set environment for command execution

SYNOPSIS
env [-] [name=value] ... [command args]

DESCRIPTION

Env obtains the current environment, modifies it according to its arguments,
then executes the command with the modified environment. Arguments of the
form name = value are merged into the inherited environment before the
command is executed. The - flag causes the inherited environment to be ignored
completely so that the command is executed with exactly the environment
specified by the arguments.

If no command is specified, the resulting environment is printed, one
name-value pair per line.

SEE ALSO

sh(1)

235-700-200
November 1998

COMMANDS

ENV(1)

Issue 7.00 See Warning in Section 1.1 Page env-1

NAME

errport — interface to craft output spooler

SYNOPSIS
/bin/errport

DESCRIPTION

The error logging process, errport, is a 2-process system that receives error
messages from both supervisor and kernel processes and the kernel itself.
Errport adds a control string if necessary and forwards the error messages to
the output spooler process for output on one or more of the craft terminals or
log files.

Interfaces for the kernel, kernel processes, and supervisor processes to the
errport system are provided in library errpt (see Volume 4, System Libraries,
Chapter 7, "Operating System Libraries").

The kernel formats and sends a message to the system port PT_ERRLOG. The
FIFO driver (a kernel process /prc/fda) attaches to this port and receives these
messages. Their text is stored in an area of low core (starting at physical
address Ox9000). A UNIX process (/bin/errport) reads this area by trapping to
the FIFO driver. The text of each message it finds is placed in a message
destined for the craft spooler.

Messages sent to PT_ERRLOG and received prior to a bootstrap of any kind
will be saved across the bootstrap.

Both processes are created at boot time. The FIFO driver is pcreated at boot
time and ULARP brings up the UNIX process. This process then opens the low
core FIFO (/dev/errport), which establishes the communication between the
two processes.

235-700-200
November 1998

COMMANDS

ERRPORT(1)

Issue 7.00 See Warning in Section 1.1 Page errport-1

NAME

expr — evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION

DESCRIPTION

The arguments are taken as an expression. After evaluation, the result is
written on the standard output. Terms of the expression must be separated by
blanks. Characters special to the shell must be escaped. Note that 0 is returned
to indicate a zero value, rather than the null string. Strings containing blanks
or other special characters should be quoted. Integer-valued arguments may be
preceded by a unary minus sign. Internally, integers are treated as 32-bit, 2s
complement numbers.

The operators and keywords are listed below. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence; with
equal precedence operators grouped within {} symbols.

expr \ | expr
returns the first expr if it is neither null nor 0; otherwise returns
the second expr.

expr \& expr returns the first expr if neither expr is null nor 0; otherwise
returns 0.

expr { =, \>, \>=, \<=, != } expr
returns the result of an integer comparison if both arguments are
integers; otherwise returns the result of a lexical comparison.

expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr { \ *, /, % } expr
multiplication, division, or remainder of the integer-valued
arguments.

expr : expr The matching operator : compares the first argument with the
second argument which must be a regular expression; regular
expression syntax is the same as that of ed (1), except that all
patterns are “anchored’’ (that is, begin with ^) and, therefore, ^ is
not a special character in that context. Normally, the matching
operator returns the number of characters matched (0 on failure).
Alternatively, the \(...\) pattern symbols can be used to return a
portion of the first argument.

EXAMPLES

1. a=’expr $a + 1’

adds 1 to the shell variable a .

2. # ’For $a equal to either "/usr/abc/file" or just "file",
expr $a : ’.*/ \ (.*\)’ \| $a

235-700-200
November 1998

COMMANDS

EXPR(1)

Issue 7.00 See Warning in Section 1.1 Page expr-1

returns the last segment of a path name (i.e., file). Watch out for / alone as
an argument; expr will take it as the division operator (see BUGS).

3. # A better representation of example 2.
expr //$a : ’.*/ \ (.* \)’

The addition of the // characters eliminates any ambiguity about the
division operator and simplifies the whole expression.

4. expr $VAR : ’.*’

returns the number of characters in $VAR .

SEE ALSO

ed(1), sh(1)

EXIT CODE

As a side effect of expression evaluation, expr returns the following exit values:

0 if the expression is neither null nor 0

1 if the expression is null or 0

2 for invalid expressions.

DIAGNOSTICS

syntax error for operator/operand errors
non-numeric argument if arithmetic is attempted on such a string

BUGS

After argument processing by the shell, expr cannot tell the difference between
an operator and an operand except by the value. If $a is an = , the command:

expr $ a = ’=’

looks like:

expr = = =

as the arguments are passed to expr (and they will all be taken as the =
operator). The following works:

expr X$a = X=

COMMANDS 235-700-200
November 1998

EXPR(1)

Page expr-2 See Warning in Section 1.1 Issue 7.00

NAME

falloc — allocate a contiguous file

SYNOPSIS
falloc file name size

DESCRIPTION

A contiguous file of the specified file name is allocated to be of ’size’ (512-byte)
blocks.

DIAGNOSTICS

The command complains that a needed directory is not searchable, the final
directory is not writable, the file already exists, or there is not enough space for
the file.

235-700-200
November 1998

COMMANDS

FALLOC(1)

Issue 7.00 See Warning in Section 1.1 Page falloc-1

NAME

false

DESCRIPTION

See true.

235-700-200
November 1998

COMMANDS

FALSE(1)

Issue 7.00 See Warning in Section 1.1 Page false-1

NAME

fgrep — See grep.

DESCRIPTION

See grep.

235-700-200
November 1998

COMMANDS

FGREP(1)

Issue 7.00 See Warning in Section 1.1 Page fgrep-1

NAME

find — find files

SYNOPSIS
find path-name-list expression

DESCRIPTION

Find recursively descends the directory hierarchy for each path name in the
path-name-list (i.e., one or more path names) seeking files that match a boolean
expression written in the primaries given below. In the descriptions, the
argument n is used as a decimal integer where +n means more than n , -n
means less than n , and n means exactly n.

-name file True if file matches the current file name. Normal shell argument
syntax may be used if escaped (watch out for [, ? and *).

-perm onum
True if the file permission flags exactly match the octal number
onum [see chmod (1)]. If onum is prefixed by a minus sign, the
flags are compared: (flags&onum)==onum.

-type c True if the type of the file is c , where c is b, c, d, p , or f for block
special file, character special file, directory, fifo (a.k.a named pipe),
or plain file.

-links n True if the file has n links.

-user uname
True if the file belongs to the user uname. If uname is numeric and
does not appear as a login name in the /etc/passwd file, it is taken
as a user ID.

-group gname
True if the file belongs to the group gname . If gname is numeric
and does not appear in the /etc/group file, it is taken as a group
ID.

-size n True if the file is n blocks long (512 bytes per block).

-atime n True if the file has been accessed in n days.

-mtime n True if the file has been modified in n days.

-ctime n True if the file has been changed in n days.

-exec cmd True if the executed cmd returns a zero value as exit status. The
end of cmd must be punctuated by an escaped semicolon. A
command argument { } is replaced by the current path name.

-ok cmd Like -exec except that the generated command line is printed with
a question mark first, and is executed only if the user responds by
typing y.

-print Always true; causes the current path name to be printed.

-cpio device
Write the current file on device in cpio (1) format (5120-byte
records).

-newer file True if the current file has been modified more recently than the
argument file .

235-700-200
November 1998

COMMANDS

FIND(1)

Issue 7.00 See Warning in Section 1.1 Page find-1

(expression) True if the parenthesized expression is true (parentheses are
special to the shell and must be escaped).

The primaries may be combined using the following operators (in order of
decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the
juxtaposition of two primaries).

3) Alternation of primaries (-o is the or operator).

EXAMPLE

To remove all files named a.out or *.o that have not been accessed for a week:
find / \(-name a.out -o -name ’*.o’\) -atime +7 -exec rm {}\;

FILES

/etc/passwd,/etc/group

SEE ALSO

chmod(1), cpio(1), sh(1)

COMMANDS 235-700-200
November 1998

FIND(1)

Page find-2 See Warning in Section 1.1 Issue 7.00

NAME

fmove — make a file multiextent

SYNOPSIS
fmove filename

DESCRIPTION

The filename specified is made into a multiextent file.

DIAGNOSTICS

The command complains a needed directory is not searchable, the final
directory is not writable, the file does not already exist, the file is open, or there
is not enough contiguous space for the file.

235-700-200
November 1998

COMMANDS

FMOVE(1)

Issue 7.00 See Warning in Section 1.1 Page fmove-1

NAME

fsaudit — file system mount auditor

SYNOPSIS
fsaudit <SG data base name><partition name>[mount point]

DESCRIPTION

DESCRIPTION

The fsaudit command locates the given partition name in the given SG data
base, and extracts the disk number, partition number, partition block count, and
partition inode block count for that partition. This information is then used to
initialize the named partition, mounting it on the optional mount point. If no
mount point name is given, then /dev/<partition name> is used. Fsaudit
basically does an incremental mount of the named file system. If the file system
is mounted, fsaudit will return immediately. Otherwise, the file system is
mounted on the named device file. If the device file does not exist, then it is
created. Fsaudit is similar to fsinit, but this command will not destroy the
contents of the file system.

DIAGNOSTICS

Fsaudit will fail with an error code if the named SG data base cannot be
attached or read, or if the requested partition cannot be successfully mounted.
Appropriate error messages are printed before fsaudit exits.

FILES

/etc/fsaudit

EXAMPLES

The command:
fsaudit /data base/appdmert.sg no5text /tmp/no5mtpt

will read the application SG data base (appdmert.sg), extract the information needed
to mount no5text, and mount the no5text partition on /tmp/no5mtpt.

The command:
fsaudit /data base/appdmert.sg no5text

will act the same as the above command, but the no5text partition will be mounted on
/dev/no5text by default.

CAVEATS

Note that fsaudit can not always mount a corrupted file system, in which case
fsinit may have to be used (with discretion).

SEE ALSO

fsinit(1)

235-700-200
November 1998

COMMANDS

FSAUDIT(1)

Issue 7.00 See Warning in Section 1.1 Page fsaudit-1

NAME

fsdb — file system debugger

SYNOPSIS
/etc/fsdb special [-]
/etc/fsdb [-w] special [-]

DESCRIPTION

Fsdb can be used to patch up a damaged file system. It contains conversions
which translate block and i-numbers into their corresponding disk addresses. It
also includes mnemonic offsets which can be used to access different parts of an
i-node.

These features simplify correcting control block entries or descending the file
system tree.

Fsdb contains several error checking routines to verify i-node and block
addresses. These can be disabled if necessary by invoking fsdb with the optional
- argument or by the use of the 0 symbol. (fsdb reads the i-size entries from the
super-block of the file system in order to perform these checks.)

The -w option enables fsdb to write to mounted file systems. Without -w, fsdb
defaults to the read only mode. To patch a mounted file system, the openwd
command must have been issued prior to fsdb (see openwd in this section).
Openwd allows fsdb to open special device files for mounted file systems with
read/write.

Numbers are considered decimal by default. Octal numbers must be prefixed
with a zero. Hexadecimal numbers must be prefixed by either x or 0x and must
be terminated by a colon. During any assignment operation, numbers are
checked for a possible truncation error due to a size mismatch between source
and destination.

Since fsdb reads a block at a time, it is able to handle both raw and block I/O. A
buffer management routine retains commonly used blocks of data and reduces
the number of read system calls. Some assignment operations result in a
delayed write-through of the corresponding block.

These symbols are recognized by fsdb:

i convert from i-number to i-node address

b convert to block address

d directory slot offset

+,-,*,/ address arithmetic

q quit

>,< save, restore an address

= numerical assignment

+= incremental assignment

-= decremental assignment

235-700-200
November 1998

COMMANDS

FSDB(1)

Issue 7.00 See Warning in Section 1.1 Page fsdb-1

=’’ character string assignment

O error checking flip-flop

p general print facilities

f file print facility

B byte mode

W word mode

S half-word mode

! escape to shell.

The print facilities generate a formatted output in various styles. The current
address is normalized to an appropriate boundary before printing begins. It
advances with the printing and is left at the address of the last item printed.
The output can be terminated at any time by typing the delete character. If a
number follows the p symbol, that many entries are printed. A check is made to
detect block boundary overflows since logically sequential blocks are generally
not physically sequential. If a count of zero is used, all entries to the end of the
current block are printed. These print options are available:

i print as i-nodes

d print as directories

o print as octal half words

e print as decimal words

c print as characters

b print as hexadecimal bytes

h print as hexadecimal words.

The f symbol is used to print data blocks associated with the current i-node.
(Blocks are numbered starting with zero.) The desired print option letter follows
the block number or the f symbol. It checks for special devices and for nonzero
block pointers.

Dots, tabs, and spaces may be used as function delimiters but are not necessary.
A line which contains only a newline character will increment the current
address by the size of the data type last printed. That is, the address is set to
the next byte, word, half-word, directory entry or i-node, allowing the user to
step through a region of a file system. Information is printed in a format
appropriate to the data type. Bytes, words, and double words are displayed with
the hexadecimal address followed by the value in hexadecimal and decimal. A .B
or .S is appended to the address for byte and half-word values, respectively.
Directories are printed as a directory slot offset followed by the decimal
i-number and the character representation of the entry name. I-nodes are
printed with the labeled fields describing each element. The following
mnemonics are used for i-node examination and refer to the current working
i-node:

md mode

ln link count

COMMANDS 235-700-200
November 1998

FSDB(1)

Page fsdb-2 See Warning in Section 1.1 Issue 7.00

& user id number

gid group id number

sz file size

a# data block numbers (0-7)

at access time

mt modification time

maj device class number

min logical device identification number.

EXAMPLES

Examples of fsdb uses are:

386i prints i-number 386 in an i-node format. This now becomes the
current working i-node.

a0b.p0x10:h
prints the first 16 words of the file for which a 0 is the starting
block number.

2i.fd prints the first 32 directory entries for the root i-node of this file
system.

d5i.fc changes the current i-node to the i-node associated with the fifth
directory. The first 512 bytes of the file are then printed in ASCII.

lb.p0o prints the superblock of this file system in octal.

LIMITATIONS

fsdb is a useful command which would be even more useful if it worked as
planned (for example, the = operator when applied to an i-node value).

235-700-200
November 1998

COMMANDS

FSDB(1)

Issue 7.00 See Warning in Section 1.1 Page fsdb-3

NAME

fsinit — file system initializer

SYNOPSIS
fsinit <SG data base name><partition name>[mount point]

DESCRIPTION

The fsinit command locates the given partition name in the given SG data base,
and extracts the disk number, partition number, partition block count, and
partition inode block count for that partition. This information is then used to
initialize the named partition, mounting it on the optional mount point. If no
mount point name is given, then /dev/<partition name> is used. Fsinit uses the
clrfs system call to initialize the superblock of the named partition with the
data extracted from the named SG data base. Basically, fsinit acts like a smart
"mount" command - it tries to guarantee that the named partition is
successfully mounted, and is correctly initialized as per the SG data base
specifications.

DIAGNOSTICS

Fsinit will fail with an error code if the named SG data base cannot be attached
or read, or if the requested partition cannot be successfully mounted.
Appropriate error messages are printed before fsinit exits.

FILES

/etc/fsinit

EXAMPLES

The command:
fsinit /data base/appdmert.sg no5text /tmp/no5mtpt

will read the application SG data base (appdmert.sg), extract the information needed
to initialize the superblock of no5text, clear and update the no5text superblock using
the new information, and mount the no5text partition on /tmp/no5mtpt.

The command:
fsinit /data base/appdmert.sg no5text

will act the same as the above command, but the no5text partition will be mounted on
/dev/no5text by default.

CAVEATS

Note that fsinit will wipe out the existing information in the named partition’s
superblock, thereby making that partition appear "empty" - as any link to the
information stored therein is lost. For this reason, fsinit should be used with
discretion and care.

SEE ALSO

fsaudit(1)

235-700-200
November 1998

COMMANDS

FSINIT(1)

Issue 7.00 See Warning in Section 1.1 Page fsinit-1

NAME

fsize — get size of contiguous file

SYNOPSIS
fsize filename

DESCRIPTION

The size of filename specified is returned.

LIMITATIONS

Fsize is meaningless on noncontiguous files.

235-700-200
November 1998

COMMANDS

FSIZE(1)

Issue 7.00 See Warning in Section 1.1 Page fsize-1

NAME

grep, fgrep — search a file for a pattern

SYNOPSIS
grep [options] expression [files]
fgrep [options] strings [files]

DESCRIPTION

Commands of the grep family search the input files (standard input default) for
lines matching a pattern. Normally, each line found is copied to the standard
output. Fgrep patterns are fixed strings ; it is fast and compact. Grep patterns
are limited regular expressions in the style of ed (1); it uses a compact
nondeterministic algorithm. The following options are recognized:

-v All lines but those matching are printed.

-x (Exact) only lines matched in their entirety are printed (fgrep only).

-c Only a count of matching lines is printed.

-l Only the names of files with matching lines are listed (once),
separated by new lines.

-n Each line is preceded by its relative line number in the file.

-b Each line is preceded by the block number on which it was found.
This is sometimes useful in locating disk block numbers by context.

-s The error messages produced for nonexistent or unreadable files
are suppressed (grep only).

-e expression
Same as a simple expression argument, but useful when the
expression begins with a - (does not work with grep).

-f file The strings list (fgrep) is taken from the file .

In all cases, the file name is output if there is more than one input file. Care
should be taken when using the characters $, *, [, ^, |, (,) , and \ in expression ;
because they are also meaningful to the shell. It is safest to enclose the entire
expression argument in single quotes ’...’ .

Fgrep searches for lines that contain one of the strings separated by new lines.

SEE ALSO

ed(1), sed(1), sh(1)

DIAGNOSTICS

Exit status is 0 if any matches are found, 1 if none, and 2 for syntax errors or
inaccessible files (even if matches were found).

BUGS

Ideally there should be only one grep , but a single algorithm that spans a wide
enough range of space-time tradeoffs does not exist.

Lines are limited to 256 characters; longer lines are truncated.

235-700-200
November 1998

COMMANDS

grep(1)

Issue 7.00 See Warning in Section 1.1 Page grep-1

NAME

ichk — file system consistency check and interactive repair

SYNOPSIS
ichk [-bnsvy] [filesystem] ...

DESCRIPTION

Ichk audits DMERT file systems for consistency and allows the operator to
correct any discrepancies. Note that a file system must be unmounted before
corrections can be made (see LIMITATIONS). Since these corrections will, in
general, result in a loss of data, the program will request operator concurrence
for each such action. All questions should be answered by typing yes or no,
followed by a newline character. Typing yes causes the correction to take place.
However, if the program does not have write permission on the file system all
questions will automatically be answered no.

The following options are recognized:

-b runs only phases that check for block inconsistencies (phases 1, 2,
and 7).

-n causes all questions to be answered no automatically.

-s salvages all blocks not found in some file and makes a new free list
(if the bit map is bad, it too is recreated).

-v turns the verbose mode off.

-y causes all questions to be answered yes automatically.

The program consists of seven separate phases. Some phases are skipped if they
are not needed. In phase one, ichk examines all block pointers in all files;
checking for pointers which are outside of the file system (BAD), for blocks
which appear in more than one file (DUP), and for blocks which are (incorrectly)
included in the i-node’s block pointer list but are actually beyond the size of the
file. A table is made of all DUP blocks and all defective files are marked for
clearing (BAD and DUP only). No correction takes place in this phase for BAD
and DUP errors. The operator is, however, given an option of clearing the
incorrect (BEYOND FILE SIZE) block pointers by replacing them with null (0)
values.

The second phase is run only if DUP blocks were found in phase one. This
phase finds the rest of the DUP blocks and marks them for clearing.

If the -b option has not been selected, then the third and fourth phases check
the directory structure of the file system by descending the directory tree and
examining each entry. A count of the number of references to each file is
maintained. If any entry refers to an unallocated file, a file marked for clearing,
or a file number outside the file system, the entry is printed, and, if the
operator agrees, it is removed. Refusing to remove an entry to a marked file will
clear the mark and preserve the file with its subsequent entries.

If the -b option has not been selected, then phase five lists all marked or
unreferenced files. With concurrence from the operator, each of these files is

235-700-200
November 1998

COMMANDS

ICHK(1)

Issue 7.00 See Warning in Section 1.1 Page ichk-1

then cleared. In addition, any file with a link count that does not agree with the
number of references is listed, and, if the operator agrees, the link count is
adjusted.

If the salvage option, -s, and/or the block option, -b, is on, phase six is skipped.
Otherwise, the bit map and free list are examined. If any blocks are found that
are outside the file system, that have been previously encountered in a file or
elsewhere in the free list, or that do not appear in the bit map, free list, or any
file then the list or bit map is pronounced BAD and a salvage is called for.
Operator agreement will set the salvage option and proceed to the next phase. If
there are no defects in the free list and bit map and all blocks are accounted for,
the check is finished. Otherwise, the number of missing blocks is printed and a
salvage is requested.

The last phase is the salvage operation, where the free list and/or the bit map is
recreated. It is run whenever the salvage option is on or a problem has been
found in phase 6. Simply stated, a new free list is constructed containing all
blocks not found in some file (if the bit map is bad, it too is recreated).

The system responses are, in general, self-explanatory and follow the sequence
described above. In the description of the output which follows, this notation
will be used:

 block number

<i> i-node number

<fname> file pathname

<n> positive integer

<c> option character

Ichk begins with the following output.
<filesystem> {(NO WRITE)}

Phase 1 — Check Blocks

The (NO WRITE) message indicates that the program does not have write
permission on the file system. Therefore, subsequent corrections will be
suppressed, by automatically answering no to all questions. Phase 1 then
proceeds to list any BAD, DUP, or BEYOND FILE SIZE blocks and their i-node
number, as follows:

 BAD I=<i>
 DUP I=<i>
 EXCESSIVE DUPS I=<i>
 BEYOND FILE SIZE I=<i>

If no -[yn] option has been specified, the program will wait for a response of yes
or no after each BEYOND FILE SIZE message. A yes answer will replace the
block pointer with a null (0) value. A no answer will leave the block pointer
unaffected. In either case, all other data associated with the i-node is not
affected, nor is the i-node cleared.

COMMANDS 235-700-200
November 1998

ICHK(1)

Page ichk-2 See Warning in Section 1.1 Issue 7.00

If too many DUPs are encountered, the program will list all blocks, but it will
not mark the excess DUPs for later processing. When phase 1 is finished, if any
DUPs were encountered, then phase 2 is run. Otherwise, phase 2 is skipped.

Phase 2 — Rescan For More

 DUP I = <i>

Check descends the directory tree, asking whether to remove any defective
entries.

Phase 3 — Check Pathnames

No text.

Phase 4 — Check Connectivity

I OUT OF RANGE I = <i> <fname> REMOVE?
UNALLOCATED I = <i> <fname> REMOVE?
BAD/DUP I = <i> <fname> REMOVE?

If no option has been specified, the program will wait for a response of yes or no
after each question. A no answer to the BAD/DUP entry will unmark that i-node
for clearing. This will suppress any subsequent correction to that file.

Phase 5 — Check Reference Counts

Now ichk will clear or adjust any defective files. Again, if no option has been
specified, it will wait for a yes or no response to each question. The program
will also indicate whether each entry is a file or a directory.

UNREFERENCED {FILE/DIRECTORY} I = <i> CLEAR?
BAD/DUP {FILE/DIRECTORY} I = <i> CLEAR?
LINK COUNT {FILE/DIRECTORY} I = <i> ADJUST?

Phase 6 — Check Free List

If the salvage option is not on, the program will now validate the free list and
bit map. Otherwise, this phase is skipped. If there are any errors, it will specify
them and request a salvage.

BAD FREE CHAIN SALVAGE?
BAD BIT MAP SALVAGE?
FREE LIST BOTCH SALVAGE?

Phase 7 — Salvage Free List

This operation is performed only upon request.

235-700-200
November 1998

COMMANDS

ICHK(1)

Issue 7.00 See Warning in Section 1.1 Page ichk-3

These totals are printed: the total number of allocated files (including
directories and special files), the number of blocks in use, and the number of
blocks in the free list.

<n> FILES <n> BLOCKS <n> FREE

If the file system has been modified, then the message, BOOT UNIX(NO
SYNC!), is printed and the program goes into a loop. This is only a reminder to
the operator since the program can be forced to terminate with a
character.

DIAGNOSTICS

Exit code 0 is returned for no file system consistency errors; 1, if file system
errors were found and all were corrected; 2, if file system errors were found but
not all were corrected; and 3, for ichk process failure before completion (for
example, because of inability to open device). A number of errors can terminate
ichk. An illegal option is ignored, but the inability to open the file system is
shown as:

CAN NOT OPEN <filesystem>

An I/O error on the file system will also return an error message. In this case,
the operator is given the choice of exiting (yes) or continuing (no). This error is
generally a hardware error, and continuing is rarely a good idea.

CAN NOT READ <filesystem> BLOCK EXIT?
CAN NOT SEEK <filesystem> BLOCK EXIT?
CAN NOT WRITE <filesystem> BLOCK EXIT?

LIMITATIONS

ichk has been known to produce core images on large file systems.

Since ichk diagnoses problems that exist on the disk version of the file system
(such as superblock and bit map), two warnings are given.

-File system errors found by
ichk valid only if the file system was unmounted during the ichk
process. If the file system cannot be unmounted and an ichk is
mandatory then the operator should run several (three or more)
ichk with -n option on a quiet (if possible) mounted file system. Any
errors that appear in all the ichks probably exist. If the errors
disappear in all the ichks, then they are probably temporary and of
no concern.

-Corrections that
ichk makes to the mounted file system are overwritten
(invalidated) with in-core file system information. Therefore,
corrections should be made only when the file system is
unmounted.

COMMANDS 235-700-200
November 1998

ICHK(1)

Page ichk-4 See Warning in Section 1.1 Issue 7.00

NAME

id — print user and group IDs and names

SYNOPSIS
id

DESCRIPTION

Id writes a message on the standard output giving the user and group IDs and
the corresponding names of the invoking process. If the effective and real IDs do
not match, both are printed.

235-700-200
November 1998

COMMANDS

ID(1)

Issue 7.00 See Warning in Section 1.1 Page id-1

NAME

kill — terminate a process

SYNOPSIS
kill [- signo] PID ...

DESCRIPTION

Kill sends signal 15 (terminate) to the specified processes. This will normally
kill processes that do not catch or ignore the signal. The process number of each
asynchronous process started with & is reported by the Shell (unless more than
one process is started in a pipeline, in which case the number of the last process
in the pipeline is reported). Process numbers can also be found by using ps (1).

If process number 0 is specified, all processes in the process group are signaled.

The killed process must belong to the current user unless the user is the super
user.

If a signal number preceded by - is given as first argument, that signal is sent
instead of terminate. In particular “kill -9 ...’’ is a sure kill.

SIGNALS

1 hang-up
2 interrupt
3 quit
4 illegal instruction
5 trace trap
6 IOT instruction
7 EMT instruction
8 floating point exception
9 kill (cannot be caught or ignored)
10 bus error
11 segmentation violation
12 bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination signal

SEE ALSO

ps(1), sh(1)

235-700-200
November 1998

COMMANDS

KILL(1)

Issue 7.00 See Warning in Section 1.1 Page kill-1

NAME

killp — terminate user processes by invoking pathname

SYNOPSIS
killp [-signo] full-pathname

DESCRIPTION

Killp sends signo to all processes with an invocation path of full-pathname .
signo is a decimal integer constant.

If signo is defaulted, the signal 9 (SIGKILL) is sent.

The path full-pathname must begin with a slash (/).

SEE ALSO

kill(1), pkill(1), ps(1)

DIAGNOSTICS

If an error occurs, a message is written to stderr and an exit status of 1 is
returned.

LIMITATIONS

Killp will only kill processes whose argv[0] is identical to the full pathname
with which the process was invoked. Therefore, processes invoked with relative
pathnames, or processes that modify argv[0] will not be killable with this
command. Also, processes invoked from linked files will only be killed if argv[0]
is the full pathname of the appropriate linked filename (that is, the
full-pathname argument to killp).

CAVEATS

The killp command will not terminate a suspended process because it results in
a message being sent to the process, requesting it to kill itself. Since the process
is suspended, it cannot handle these messages.

235-700-200
November 1998

COMMANDS

KILLP(1)

Issue 7.00 See Warning in Section 1.1 Page killp-1

NAME

lf — list contents of directory

SYNOPSIS
lf [-1aAbcCdfFgilmnopqrRstuvVx] [files ...]

DESCRIPTION

For each directory argument, lf lists the contents of the directory; for each file
argument, lf repeats its name and any other information requested. The output
is sorted alphabetically by default. When no argument is given, the current
directory is listed. When several arguments are given, the arguments are first
sorted appropriately, but file arguments appear before directories and their
contents.

There are several major listing formats. The format chosen depends on whether
the output is going to a teletype, and may also be controlled by option flags. The
default format for a teletype is to list the contents of directories in multi-column
format, with the entries sorted down the columns. (Files which are not the
contents of a directory being interpreted are always sorted across the page
rather than down the page in columns. This is because the individual file names
may be arbitrarily long. This format may be requested with -x.) If the standard
output is not a teletype, the default format is to list one entry per line. (This is
the -1 option.) A long listing, detailing much information about the file can be
requested with the -l option. Finally, there is a stream output format in which
files are listed across the page, separated by ‘,’ characters. The -m flag
invocation enables this format.

There are an unbelievable number of options:

-1 force one entry per line output format, e.g. to a teletype.

-a List all entries; usually entries beginning with ’.’ are suppressed.

-A List all entries except ’.’ and ’..’

-b force printing of non-graphic characters to be in the ÷dd notation,
in octal.

-c Use time of file creation for sorting or printing.

-C force multi-column output, e.g. to a file or a pipe.

-d If argument is a directory, list only its name, not its contents
(mostly used with -l to get status on directory.)

-f Force each argument to be interpreted as a directory and list the
name found in each slot. This option turns off -l, -t, -s, and -r, and
turns on -a; the order is the order in which entries appear in the
directory.

-F cause directories to be marked with a leading and trailing square
brackets ’[dir]’ and executable files to be marked with a leading
’*’; this is the default.

-g Same as -l except the owner name is not printed.

-i Print i-number in first column of the report for each file listed.

235-700-200
November 1998

COMMANDS

LF(1)

Issue 7.00 See Warning in Section 1.1 Page lf-1

-l List in long format, giving mode, number of links, owner, group,
size in bytes, and time of last modification for each file. (See below.)
If the file is a special file the size field will instead contain the
major and minor device numbers.

-m force stream output format.

-n Same as -l except owner and group are printed as integers instead
of searching the password and group files for translations.

-o Same as -l except the group name is not printed.

-p Same as -F except executable files are not marked.

-q force printing of non-graphic characters in file names as the
character ‘?’; this normally happens only if the output device is a
teletype.

-r Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

-R recursively list subdirectories encountered.

-s Give size in blocks, including indirect blocks, for each entry.

-t Sort by time modified (latest first) instead of by name, as is
normal.

-u Use time of last access instead of last modification for sorting (-t)
or printing (-l).

-v on multi-column output, column width is fixed (non-variable). This
is the default.

-V Print version number and exit.

-x force columnar printing to be sorted across rather than down the
page; this is the default.

The mode printed under the -l option contains 11 characters which are
interpreted as follows, the first character is:

b if the entry is a block-type special file;

c if the entry is a character-type special file;

d if the entry is a directory;

p if the entry is a FIFO (named pipe) special file.

- if the entry is a plain file.

C if the entry is a one contiguous extents file.

x if the entry is allocated by contiguous extents.

The next 9 characters are interpreted as three sets of three bits each. The first
set refers to owner permissions; the next to permissions to others in the same
user-group; and the last to all others. Within each set the three characters
indicate permission respectively to read, to write, or to execute the file as a
program. For a directory, ‘execute’ permission is interpreted to mean permission
to search the directory for a specified file. The permissions are indicated as
follows:

r if the file is readable;

COMMANDS 235-700-200
November 1998

LF(1)

Page lf-2 See Warning in Section 1.1 Issue 7.00

w if the file is writable;

x if the file is executable;

- if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set-group-ID
mode; likewise the user-execute permission character is given as s if the file has
set-user-ID mode. An S in either position indicates the set-ID bit is set but the
corresponding execute bit is not.

The last character of the mode (normally ‘x’ or ‘-’) is t if the 1000 (save text) bit
of the mode is on. A T in this position indicates the save text bit is on but there
is no execute permission for ’other.’ See chmod(1) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks is printed.

FILES

/etc/passwd
/etc/group

BUGS

Newline and tab are considered printing characters in file names.

235-700-200
November 1998

COMMANDS

LF(1)

Issue 7.00 See Warning in Section 1.1 Page lf-3

NAME

line — read one line

SYNOPSIS
line

DESCRIPTION

Line copies one line (up to a new line) from the standard input and writes it on
the standard output. It returns an exit code of 1 on EOF and always prints at
least a new line. It is often used within shell files to read from the user’s
terminal.

SEE ALSO

sh(1)

235-700-200
November 1998

COMMANDS

LINE(1)

Issue 7.00 See Warning in Section 1.1 Page line-1

NAME

ln

DESCRIPTION

See cp.

235-700-200
November 1998

COMMANDS

LN(1)

Issue 7.00 See Warning in Section 1.1 Page ln-1

NAME

logdir — get login directory

SYNOPSIS
logdir [user ...]

DESCRIPTION

Logdir returns the login directory of a user. If no arguments are specified, the
contents of the environment variable $HOME is listed. If the $HOME variable is
not set, ie:unset, or set to NULL, the login directory is taken from the password
file. User argument(s), if specified, cause the login directory for that user to be
taken from the password file.

FILES

/etc/passwd

SEE ALSO

login(1), env(1)

DIAGNOSTICS

Returns the number of unknown users, which may be zero.

235-700-200
November 1998

COMMANDS

LOGDIR(1)

Issue 7.00 See Warning in Section 1.1 Page logdir-1

NAME

login — sign on

SYNOPSIS
login [name]

DESCRIPTION

The login command is used at the beginning of each terminal session and allows
you to identify yourself to the system. It may be invoked as a command or by
the system when a connection is first established. Also, it is invoked by the
system when a previous user has terminated the initial shell by typing a cntrl-d
to indicate an ‘‘end-of-file.’’

Login may not be invoked as a command.

Login asks for your user name (if not supplied as an argument), and, if
appropriate, your password. Echoing is turned off (where possible) during the
typing of your password so it will not appear on the written record of the
session.

At some installations, an option may be invoked that will require you to enter a
second ‘‘machine’’ password. This will be prompted by the message “machine
password:’’. Both passwords are required for a successful login.

If you do not complete the login successfully within 5 tries, all later attempts
will fail. The TTY will have to be removed and restored before it will again let
any one login on it.

After a successful login, accounting files are updated; the procedure /etc/profile
is performed; the message-of-the-day, if any, is printed; the user-ID, the
group-ID, the working directory, and the command interpreter [usually sh (1)] is
initialized; and the file .profile in the working directory is executed, if it exists.
These specifications are found in the /etc/passwd file entry for the user. The
name of the command interpreter is - followed by the last component of the
interpreter’s pathname (i.e., -sh). If this field in the password file is empty,
then the default command interpreter, /bin/sh is used.

The basic environment is initialized to:
HOME=your-login-directory

PATH=:/bin:/usr/bin

SHELL=last-field-of-passwd-entry

MAIL=/usr/mail/ your-login-name

TZ=timezone-specification

235-700-200
November 1998

COMMANDS

LOGIN(1)

Issue 7.00 See Warning in Section 1.1 Page login-1

FILES

/etc/utmp accounting
/etc/wtmp accounting
/usr/mail/ your-name mailbox for user your-name
/etc/motd message-of-the-day
/etc/passwd password file
/etc/profile system profile
.profile user’s login profile

When you want to end a terminal session, type a cntrl-d to indicate an
‘‘end-of-file.’’ Note that if you are logged on to a DAP (display administration
process) terminal, you must be in the message area at the bottom of the screen
when you enter the cntrl-d. Always end the terminal session and wait for the
subsequent prompt to appear before powering off a terminal.

SEE ALSO

admin(1), mail(1), passwd(1), sh(1), su(1)

DIAGNOSTICS

Login incorrect if the user name or the password cannot be matched.

No shell, cannot open password file, or no directory : consult a UNIX system
expert.

ROP OUTPUT

REPT LOGIN TTYNAME x FAILED. If x is the ttyname of the MCC (master
control center) or the SCC (switch control center), change ECD so that login is
not invoked from ttyname x.

REPT LOGIN TTYNAME x UNABLE TO ACCESS ECD. If the ECD is
unavailable, try again later.

REPT LOGIN TTYNAME x FAILED TO CREATE y. If process y cannot be
executed successfully, consult a UNIX system expert.

COMMANDS 235-700-200
November 1998

LOGIN(1)

Page login-2 See Warning in Section 1.1 Issue 7.00

NAME

lpr — line printer spooler

SYNOPSIS
lpr [-s] [device]

DESCRIPTION

Lpr sends standard input to the local line printer [ROP (read-only printer)].
Output can be directed to other devices by either changing the device(s)
associated with output class UNIX system or by specifying the desired device
as the first parameter.

Lpr assigns a job number, divides the input into parts for the spooler, adds a
header to each part, sends the parts to the spooler, and prints the job number
and number of parts to standard output.

If the single part option -s is specified, the printout will not be divided into
parts. This makes for a ’nicer’ looking output but can cause alarms at the SCC.

NOTE

Many ROPs are configured to print lowercase letters as uppercase letters. If
lowercase letters are desired, set switch 1 of switch block SWE8 of the ROP to
the "off" state.

ERROR MESSAGES

lpr: cancelled non-printable character @ X in input stream.

Possible cause - attempt to print an object module. X is the location of the
nonprintable.

lpr: aborted - can’t open temp file /unixa/tmp/UA....

Possible causes - /unixa/tmp directory is missing, /unixa file system not
mounted read/write, or file system full.

EXAMPLES

Print the output of the ’date’ command on the recent change and verify
terminal.

date | lpr ttyv

Print /etc/passwd on the ROP.
lpr </etc/passwd

FILES

/unixa/tmp/UA* File(s) passed to spooler to print.

BUGS

Output to unknown devices is dropped by the spooler without notice.

235-700-200
November 1998

COMMANDS

LPR(1)

Issue 7.00 See Warning in Section 1.1 Page lpr-1

NAME

ls — list contents of directories

SYNOPSIS
ls [-lgtasdrucif] names

DESCRIPTION

For each directory named, ls lists the contents of that directory; for each file
named, ls repeats its name and any other information requested. By default,
the output is sorted alphabetically. When no argument is given, the current
directory is listed. When several arguments are given, the arguments are first
sorted appropriately, but file arguments are processed before directories and
their contents. There are several options:

-l List in long format, giving mode, number of links, owner, size in
bytes, and time of last modification for each file (see below). If the
file is a special file, the size field will contain the major and minor
device numbers; rather than a size.

-g Print group rather than owner with -l option.

-t Sort by time of last modification (latest first) instead of by name.

-a List all entries; in the absence of this option, entries whose names
begin with a period (.) are not listed.

-s Give size in blocks (including indirect blocks) for each entry.

-d If argument is a directory, list only its name; often used with -l to
get the status of a directory.

-r Reverse the order of sort to get reverse alphabetic or oldest first, as
appropriate.

-u Use time of last access instead of last modification for sorting (with
the -t option) and/or printing (with the -l option).

-c Use time of last modification of the inode (mode, etc.) instead of
last modification of the file for sorting (-t) and/or printing (-l).

-i For each file, print the i-number in the first column of the report.

-f Force each argument to be interpreted as a directory and list the
name found in each slot. This option turns off -l, -t, -s , and -r, and
turns on -a; the order is the order in which entries appear in the
directory.

The mode printed under the -l option consists of 11 characters that are
interpreted as follows:

The first character is:

d if the entry is a directory;

b if the entry is a block special file;

c if the entry is a character special file;

p if the entry is a fifo (a.k.a. ‘‘named pipe’’) special file;

C if the entry is a contiguous file;

235-700-200
November 1998

COMMANDS

LS(1)

Issue 7.00 See Warning in Section 1.1 Page ls-1

x if the entry is a multiextent file;

- if the entry is an ordinary file.

The next nine characters are interpreted as three sets of three bits each. The
first set refers to the owner’s permissions; the next to permissions of others in
the user-group of the file; and the last to all others. Within each set, the three
characters indicate permission to read, to write, and to execute the file as a
program, respectively. For a directory, ‘‘execute’’ permission is interpreted to
mean permission to search the directory for a specified file.

The permissions are indicated as follows:

r if the file is readable;

w if the file is writable;

x if the file is executable;

- if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set-group-ID
mode; likewise, the user-execute permission character is given as s if the file
has set-user-ID mode. The last character of the mode (normally x or -) is t if the
1000 (octal) bit of the mode is on; see chmod (1) for the meaning of this mode.
The indications of set-ID and 1000 bit of the mode are capitalized (S and T,
respectively) if the corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

FILES

/etc/passwd to get user IDs and

/etc/group to get group IDs.

SEE ALSO

chmod(1), find(1)

COMMANDS 235-700-200
November 1998

LS(1)

Page ls-2 See Warning in Section 1.1 Issue 7.00

NAME

mail, rmail — send mail to users or read mail

SYNOPSIS
mail [-pqr] [-f file]
mail persons
rmail persons

DESCRIPTION

Mail without arguments prints a user’s mail, message-by-message, in last-in,
first-out order. For each message, the user is prompted with a ?, and a line is
read from the standard input to determine the disposition of the message:

<new line> Go on to next message.

+ Same as <new line>.

d Delete message and go on to next message.

p Print message again.

- Go back to previous message.

s [files] Save message in the named files (mbox is default).

w [files] Save message, without its header, in the named files (mbox is
default).

m [persons]
Mail the message to the named persons (yourself is default).

q Put undeleted mail back in the mailfile and stop.

EOT (control-d)
Same as q.

x Put all mail back in the mailfile unchanged and stop.

! command Escape to the shell to do command.

* Print a command summary.

The optional arguments alter the printing of the mail:

-p causes all mail to be printed without prompting for disposition.

-q causes mail to terminate after interrupts. Normally an interrupt
only causes the termination of the message being printed.

-r causes messages to be printed in first-in, first-out order.

-f file causes mail to use file (e.g., mbox) instead of the default mailfile.

When persons are named, mail takes the standard input up to an end-of-file (or
up to a line consisting of just a .) and adds it to each person’s mailfile. The
message is preceded by the sender’s name and a postmark. Lines that look like
postmarks in the message (that is, ‘‘From ...’’) are preceded with a >. A person is
usually a user name recognized by login (1). If a person being sent mail is not
recognized, or if mail is interrupted during input, the file dead.letter will be
saved to allow editing and resending.

235-700-200
November 1998

COMMANDS

MAIL(1)

Issue 7.00 See Warning in Section 1.1 Page mail-1

To denote a recipient on a remote system, prefix person by the system name and
exclamation mark. Everything after the first exclamation mark in persons is
interpreted by the remote system. In particular, if persons contains additional
exclamation marks, it can denote a sequence of machines through which the
message is to be sent on the way to its ultimate destination. For example,
specifying a!b!cde as a recipient’s name causes the message to be sent to user
b!cde on system a. System a will interpret that destination as a request to send
the message to user cde on system b. This might be useful, for instance, if the
sending system can access system a but not system b, and system a has access
to system b.

Rmail only permits the sending of mail.

When a user logs in, the presence of mail, if any, is indicated. Also, notification
is made if new mail arrives while using mail.

FILES

/etc/passwd to identify sender and locate persons
/usr/mail/ user incoming mail for user; that is, the manfile
$HOME/mbox saved mail
$MAIL variable containing path name of mailfile
/tmp/ma* temporary file
/usr/mail/*. lock lock for mail directory
dead.letter unmailable text

SEE ALSO

login(1), write(1)

BUGS

Race conditions sometimes result in a failure to remove a lock file.

After an interrupt, the next message may not be printed; printing may be forced
by typing a p.

COMMANDS 235-700-200
November 1998

MAIL(1)

Page mail-2 See Warning in Section 1.1 Issue 7.00

NAME

man — display manual pages

SYNOPSIS
man [command ...] all.man.pages

DESCRIPTION

Man attempts to locate the manual page(s) for each command specified and
then displays them on the standard output; thus:

man at

displays the manual page for the ’at’ command.
man cat man

displays the manual pages for the ’cat’ and ’man’ commands.

Some commands, such as ’true’ and ’false,’ share a single manual page. Thus,
requesting either one results is displaying the same page.

If all.man.pages is specified, then the names of all manual pages are displayed.

FILES

/unixa/man/* Manual pages

235-700-200
November 1998

COMMANDS

MAN(1)

Issue 7.00 See Warning in Section 1.1 Page man-1

NAME

mesg — permit or deny messages

SYNOPSIS
msg [n] [y]

DESCRIPTION

Mesg with argument n forbids messages via write (1) by revoking nonuser write
permission on the user’s terminal. Mesg with argument y reinstates permission.
All by itself, mesg reports the current state without changing it.

FILES

/dev/tty*

SEE ALSO

write(1)

DIAGNOSTICS

Exit status is 0 if messages are receivable, 1 if not, or 2 on error.

235-700-200
November 1998

COMMANDS

MESG(1)

Issue 7.00 See Warning in Section 1.1 Page mesg-1

NAME

mkdir — make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION

Mkdir creates specified directories in mode 777, possibly altered by umask [see
sh(1)]. Standard entries, . , for the directory itself, and .. , for its parent, are
made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO

sh(1), rm(1), umask [see sh(1)]

DIAGNOSTICS

Mkdir returns exit code 0 if all directories were successfully made; otherwise, it
prints a diagnostic and returns nonzero.

235-700-200
November 1998

COMMANDS

MKDIR(1)

Issue 7.00 See Warning in Section 1.1 Page mkdir-1

NAME

mkdsk — read in disk partition(s) from tape

SYNOPSIS
/etc/mkdsk -i <tape> -d <vtoc> -p <list>
/etc/mkdsk -i <tape> -o <mhd>

DESCRIPTION

The mkdsk command allows one or more partitions from a Load Format (LDFT)
tape to be read into disk. The first format allows selected partitions to be read
into an on-line disk or disk pair. The second format reads in all partitions on
the tape into a single Out Of Service (OOS) disk.

The parameters for the first format are:

<tape> Tape device name, usually /dev/mt00 (high speed) or /dev/mt08 (low
speed).

<vtoc> vtoc file name of destination disks. /dev/vtoc for MHDs 0&1,
/dev/vtoc1 for MHDs 2&3, /dev/vtoc2 for MHDs 4&5 and so on.

<list> A file name containing the names of the partitions to be read in.

The parameters for the second format are:

<tape> Tape device name, usually /dev/mt00 (high speed) or /dev/mt08 (low
speed).

<mhd> Destination disk name. Examples: MHD=0, MHD=4, MHD=5.

Multi-Reel

If the tape is part of a multi-reel sequence, after each tape is read the system
will rewind it and request that the tape next be mounted. After it is mounted,
enter the command ’/etc/mkstart’. This must be done within 5 minutes or the
system will time out and abort the process.

Vtoc

Be aware the /etc/mkdsk will NOT read in if the vtoc on the tape does not agree
with the vtoc on the disk. The craft command:

EXC:ENVIR:UPROC,FN="/etc/rcvtoc",ARGS=x

Will place the correct vtoc on the MHD number specified by x.

235-700-200
November 1998

COMMANDS

MKDSK(1)

Issue 7.00 See Warning in Section 1.1 Page mkdsk-1

NAME

mknod — build a special file

SYNOPSIS
/etc/mknod name [b|c|l|r] dcn part rid
/etc/mknod name p

DESCRIPTION

Mknod makes a directory entry and corresponding i-node for a special file. The
first argument is the name of the entry.

The second argument identifies the special file as one of the following types:

b block-type (disk)
c character-type
i iop-type
r record-type (magnetic tape)
p FIFO-type (named pipe).

The last three arguments are numbers specifying the device class number (dcn),
partition (part), and record ID of the minor device chain table (rid) for the
special file. The numbers may be expressed in either decimal octal notation with
the latter being indicated by a leading zero. The default creation mode is 0666.

The assignment of the dcn , part , and rid is specific to each system and must be
consistent with the equipment configuration data.

When creating a FIFO special file, the dcn , part , andrid are unnecessary.

235-700-200
November 1998

COMMANDS

MKNOD(1)

Issue 7.00 See Warning in Section 1.1 Page mknod-1

NAME

mkstart — continues a mkdsk run after a new tape has been mounted

SYNOPSIS
mkstart

DESCRIPTION

Mkstart sends a message to mkdsk in order to have mkdsk continue its run
after a new tape has been mounted. Mkstart accepts no parameters.

HEADER FILES

umsg.h, splcl.h

SEE ALSO

mkdsk(1)

DIAGNOSTICS

Processing errors are echoed to the invoking terminal. The errors that mkstart
reports are:

— A failure to get the process id of mkdsk

— Incorrect syntax of the mkstart command

— A failure to send the message to mkdsk.

235-700-200
November 1998

COMMANDS

MKSTART(1)

Issue 7.00 See Warning in Section 1.1 Page mkstart-1

NAME

mount, umount — mount and dismount file system

SYNOPSIS
/etc/mount [special directory [-r]]
/etc/umount special

DESCRIPTION

Mount announces to the system that a file system is present on the
devicespecial. Thedirectory must exist already; it becomes the name of the root
of the newly mounted file system.

These commands maintain a table of mounted devices. If invoked with no
arguments,mount prints the table.

The optional last argument indicates that the file is to be mounted read-only.
Physically write-protected and magnetic tape file systems must be mounted in
this way or errors occur when access times are updated, whether or not any
explicit write is attempted.

Umount announces to the system that the removable file system previously
mounted on device special is to be removed.

DIAGNOSTICS

Mount issues a warning if the file system to be mounted is currently mounted
under another name.

Umount complains if the special file is not mounted or if it is busy. The file
system is busy if it contains an open file or some user’s working directory.

BUGS

Some degree of validation is done on the file system; however, it is generally
unwise to mount garbage file systems.

235-700-200
November 1998

COMMANDS

MOUNT(1)

Issue 7.00 See Warning in Section 1.1 Page mount-1

NAME

msnap — memory usage snapshot program

SYNOPSIS
msnap -Ttype -P pid1 pid2 -U uid1 uid2 -Lfile -S -A -F

DESCRIPTION

Msnap is a user level program that collects run time information on the
memory consumption of a process, shared library, the kernel, or an entire
system.

Many options are provided by the tool to allow flexibility in collecting memory
consumption data on a per process or system basis. Two major report types are
currently supported for processes. The first is the short report (default). This
report will print out: the process name, utility id, process id, and tty (if a
supervisor). Sharable memory consumption is provided in pages for text, data,
and stack segments. Private memory consumption is provided in pages for text,
data, and stack segments. In the context of this document, sharable memory is
defined by the presence of a flag in the process segment list, not by whether the
segment is actually shared or not. All text segments are sharable by default.
For a description of the long report, see the type arguments listed below.

Report Types

The -T argument controls the report type and format of data provided by the
tool. The current report types are: sSkKIL. The meaning of each report type
follows.

s This option will provide information on all active supervisor level
processes.

k This option will provide information on all active kernel level
processes (except kernel special processes).

K This option provides memory usage information on the kernel
which includes the special processes.

l This option requests that shared library information be printed.
The -Llibfile argument must also be specified. The libfile keyword
indicates the full or relative pathname to a file containing the
shared library specifications. See the section on shared libraries for
the format of this file.

S This option will provide summary information on the memory
consumption of the processes snapshot. Total memory used, along
with summary information on sharable, actually shared,
swappable, and locked swappable memory, will be provided in
segments, pages, and bytes.

L This option will provide a long listing of the memory usage for the
specified processes. A line will be printed for each segment that the
measured process owns. Segment information will be output in
increasing order by segment index. The segment index (SNDX),
segment list flags (SFLGS), segment id (SEGID), segment
descriptor flags (SDEFLAGS), process lock count (PLC), I/O lock
count (IOLC), nonswap count (NSWC), active count (ACTC),

235-700-200
November 1998

COMMANDS

MSNAP(1)

Issue 7.00 See Warning in Section 1.1 Page msnap-1

number of users of the segment (NUSRS), the system name for the
segment (SEG_NAME), the number of pages in the segment (PGS),
the size of the last page in bytes (LSTPG), the pages in memory for
supervisor processes (INM), and the swap block address for
supervisor processes (SWAD) are provided. This information is
collected from the processes segment list and the system segment
descriptor.

Shared Libraries

Information on shared libraries can be obtained by this tool. For flexibility, a
specfile (-Lfile option) can be specified for shared libraries. The file argument is
the full or relative pathname of the specfile. The specfile contains information
that will allow the tool to determine which processes include a particular shared
library and which segments belong to the library.

Each shared library in the system has identifying attributes. The operating
system allows two 32-bit words (library word 0 and 1) for library identification.
Each bit in either word identifies a particular library. The msnap tool uses this
means to determine which libraries a process is attached to.

The format of the specfile contains a star (*) immediately followed by the
library name (limit of 16 characters). Next, the library word and bit index are
specified, with each value being separated by a space or tab. Additional lines
will indicate the segment indexes associated with the library. The segment
indexes are broken up into four groups. These are: the Text Segments (TS),
Data Segments (DS), Patch Segments (PS), and Misc Segments (MS) for any
additional segments. Each segment list entry must be separated by a space
character. Each segment definition must be on its own line. At least one
segment type definition with at least one segment index must be specified for
each library. For text and data segments, the maximum number of segments
that can be specified is 8. For patch and misc segments, the maximum is 4.
There is a limit of 20 library definitions in the specfile.

An example of the library specifications file entry for libc follows:
*UNIX_LIBC 1 3

TS 50

DS 51

PS 52

The library name follows the star (*) character which is the library entry separator.
The "1 3" indicates library word 1, bit position 3.

The "TS 50" line indicates one text segment at segment index 50. The "DS 51"
line indicates one data segment at segment index 51. The "PS 52" line indicates
one patch segment at segment index 52.

Specific Processes

The -P and -U arguments allow the selection of specific processes to be
measured. The -P argument allows for a list of up to 20 process ids (in decimal)
to be specified. The -U argument allows for a list of up to 20 utility ids to be

COMMANDS 235-700-200
November 1998

MSNAP(1)

Page msnap-2 See Warning in Section 1.1 Issue 7.00

specified. Each utility id must be specified in hexadecimal in the following
format: 0xfff, 0Xfff, or xfff.

Memory Usage Summary

The -S argument will provide a summary of all memory used in the system.
This option will provide a memory usage summary based on data derived from
all the system sde’s. Memory consumed, free, locked, and that on the swap
device will be printed. A limitation with this option is that a process may be
created or terminated during the collection of memory data. This may cause
some inconsistencies in the data provided. Therefore, this option may need to be
run a few times to verify the accuracy of the information provided.

SDE Audit

The -A option will run a quick audit of all the system sde’s. It will run through
all process’ pcbs and through the system sde segment and print a list of
segments that are allocated but not owned by any process. Note that one
segment will always show up. This segment is basically the low core segment
and its segid is always fixed "0x1a0000". A limitation of this option is that, if a
process is created or terminated during the audit, many segments may appear
in the output. Under this case, the tool may need to be run several times and
only the segments that repeat are the ones "really" not owned by any process.

Process Capabilities & Performance

The -F option provides information about each running supervisor process. The
information is data gathered from each process’ PCB segment. The data output
contains the number of capabilities owned by the process. Capabilities are used
and returned by the FMGR in response to open file and change directory
requests. Other information about the processes current state is also output. In
earlier versions, the DCT flags yield was output. Starting in load 1.2.25, the
flags will be presented as characters. Only four flags will be output after load
25. They are I - for in memory, 0 - for swapped out on the disk, R - for running,
S - for roadblocked (sleeping), r - for the process has run since being swapped
in, and N - to indicate that the process has the "NOFIT" dcte flag set.

FILES

msnap - the program normally resides in the /usr/bin directory.

libfile - an optional file containing shared library information.

SEE ALSO

Programmer’s Manual Volume 1, System Architecture, Section 5, contains
information that will aid the user in interpreting the data provided by this tool.
The user can also reference the following system header files for definition of
the flags and other data provided by the program.

These files reside in $OFC/head:
pcb.h

kpcb.h

235-700-200
November 1998

COMMANDS

MSNAP(1)

Issue 7.00 See Warning in Section 1.1 Page msnap-3

sde.h

pgt.h

pge.h

sge.h

const.h

dtype.h

va.h

WARNINGS

Since this program is a low level supervisor program, it may be interrupted by
higher level activity while collecting data from the kernel in heavily loaded
systems. Therefore, some inconsistencies may be noted for some of the data
provided by the tool. Under these conditions, more than one measurement may
be required to get meaningful results. However, since the program does run at
the user level, it is noninterfering to system operation and can be used in live
field sites.

COMMANDS 235-700-200
November 1998

MSNAP(1)

Page msnap-4 See Warning in Section 1.1 Issue 7.00

NAME

mv

DESCRIPTION

See cp.

235-700-200
November 1998

COMMANDS

MV(1)

Issue 7.00 See Warning in Section 1.1 Page mv-1

NAME

newgrp — log in to a new group

SYNOPSIS
newgrp [-] [group]

DESCRIPTION

Newgrp changes the group identification of its caller, analogously to login (1).
The same person remains logged in, and the current directory is unchanged, but
calculations of access permissions to files are performed with respect to the new
group ID.

Newgrp without an argument changes the group identification to the group in
the password file; in effect, it changes the group identification back to the
caller’s original group.

An initial - flag causes the environment to be changed to the one that would be
expected if the user actually logged in again.

A password is demanded if the group has a password and the user does not, or
if the group has a password and the user is not listed in /etc/group as being a
member of that group.

FILES

/etc/group
/etc/passwd

SEE ALSO

login(1)

BUGS

There is no convenient way to enter a password into /etc/group . Use of group
passwords is not encouraged, because, by their very nature, they encourage poor
security practices. Group passwords may disappear in the future.

235-700-200
November 1998

COMMANDS

NEWGRP(1)

Issue 7.00 See Warning in Section 1.1 Page newgrp-1

NAME

news — print news items

SYNOPSIS
news [-a] [-n] [-s] [items]

DESCRIPTION

News is used to keep the user informed of current events. By convention, these
events are described by files in the directory /usr/news .

When invoked without arguments, news prints the contents of all current files
in /usr/news , most recent first, with each preceded by an appropriate header.
News stores the “currency’’ time as the modification date of a file named
.news_time in the user’s home directory (the identity of this directory is
determined by the environment variable $HOME); only files more recent than
this currency time are considered “current.’’

The -a option causes news to print all items, regardless of currency. In this case,
the stored time is not changed.

The -n option causes news to report the names of the current items without
printing their contents, and without changing the stored time.

The -s option causes news to report how many current items exist, without
printing their names or contents, and without changing the stored time. It is
useful to include such an invocation of news in one’s .profile file, or in the
system’s /etc/profile .

All other arguments are assumed to be specific news items that are to be
printed.

If a delete is typed during the printing of a news item, printing stops and the
next item is started. Another delete within 1 second of the first causes the
program to terminate.

FILES

/etc/profile
/usr/news/*
$HOME/.news_time

235-700-200
November 1998

COMMANDS

NEWS(1)

Issue 7.00 See Warning in Section 1.1 Page news-1

NAME

nice — run a command at low priority

SYNOPSIS
nice [- increment] command [arguments]

DESCRIPTION

Nice executes command with a lower CPU scheduling priority. If the increment
argument (in the range 1 through 19) is given, it is used; if not, an increment of
10 is assumed.

The super user may run commands with priority higher than normal by using a
negative increment, e.g., ––10 .

SEE

nohup(1)

DIAGNOSTICS

Nice returns the exit status of the subject command.

BUGS

An increment larger than 19 is equivalent to 19.

235-700-200
November 1998

COMMANDS

NICE(1)

Issue 7.00 See Warning in Section 1.1 Page nice-1

NAME

nohup — run a command immune to hang-ups and quits

SYNOPSIS
nohup command [arguments]

DESCRIPTION

Nohup executes command with hang-ups and quits ignored. If output is not
redirected by the user, it will be sent to nohup.out . If nohup.out is not writable
in the current directory, output is redirected to $HOME/nohup.out .

SEE ALSO

nice(1)

235-700-200
November 1998

COMMANDS

NOHUP(1)

Issue 7.00 See Warning in Section 1.1 Page nohup-1

NAME

od — octal dump

SYNOPSIS
od [-bcdosx] [file] [[+]offset[.][b]]

DESCRIPTION

Od dumps file in one or more formats as selected by the first argument. If the
first argument is missing, -o is default. The meanings of the format options are:

-b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain nongraphic characters appear as
C escapes: null=\0, backspace=\b, form-feed=\f, new-line=\n, return=
\r, tab=\t; others appear as 3-digit octal numbers.

-d Interpret words in unsigned decimal.

-o Interpret words in octal.

-s Interpret 16-bit words in signed decimal.

-x Interpret words in hex.

The file argument specifies which file is to be dumped. If no file argument is
specified, the standard input is used.

The offset argument specifies the offset in the file where dumping is to
commence. This argument is normally interpreted as octal bytes. If . is
appended, the offset is interpreted in decimal. If b is appended, the offset is
interpreted in blocks of 512 bytes. If the file argument is omitted, the offset
argument must be preceded by +.

Dumping continues until end-of-file.

235-700-200
November 1998

COMMANDS

OD(1)

Issue 7.00 See Warning in Section 1.1 Page od-1

NAME

openwd — allow to open (with write) block device files for mounted file systems

SYNOPSIS
openwd

DESCRIPTION

Openwd allows processes to open with write any block devices for mounted file
systems. This command must precede the processes that modify file systems via
the block device access method, i.e., fsdb. This is to protect the mounted file
systems from trashing due to erroneous or malicious write attempts via the
block device access method to file systems. The window can be closed by using
closewd or will be closed automatically by the file manager in 20 minutes.

SEE ALSO

closewd(1), fsdb(1)

235-700-200
November 1998

COMMANDS

OPENWD(1)

Issue 7.00 See Warning in Section 1.1 Page openwd-1

NAME

parchk — partition name check

SYNOPSIS
parchk [filename]

DESCRIPTION

The parchk command reads the file filename, or stdin if no filename is given, for
a list of partition names. Each partition name in the input stream is searched
for in the on-line SG data base. For each partition name matching an SG data
base entry, parchk extracts the pack number, partition number, and block size
from the partition record. This information is printed on stdout in the following
format:

<partition name> rt <pack number> <partition number> <block count>.

If any of the named partitions are not located, then parchk will list that
partition name as "not found."

DIAGNOSTICS

Parchk will fail with an error code if the on-line SG data base cannot be
attached or read. Appropriate error messages are printed to stderr before
parchk exits.

EXAMPLES

The command:
echo "no5text" | parchk

or:

echo "no5text" > file; parchk file

would result in output similar to:

no5text rt 0 19 175000

Indicating that the no5text partition is on rt (pack #) 0, is partition number 19, and
has 175,000 blocks allocated for it.

FILES

/etc/parchk

CAVEATS

parchk assumes that each input line contains only one partition name.

235-700-200
November 1998

COMMANDS

PARCHK(1)

Issue 7.00 See Warning in Section 1.1 Page parchk-1

NAME

passwd — change login password

SYNOPSIS
passwd [name]

DESCRIPTION

This command changes (or installs) a password associated with the current
login or a specified login name .

The program prompts for the old password (if any) and then for the new one
(twice).

The following requirements will be enforced on nonsuper users to ensure
nontriviality:

1. Each password must have at least six characters.

2. Each password must contain at least two alphabetic characters and one
numeric or special character. In this case, "alphabetic" means both
uppercase and lowercase letters.

3. The new password may not be similar to the old password nor the login
name. Similar things have three or more consecutive characters in the
same or reverse order. These comparisons do not distinguish between
uppercase and lowercase.

Only the owner of name or the super user may change a password; the
owner must prove ownership by entering the old password. Only the super
user can create a null password or disobey the nontriviality tests.

The password file is not changed if the new password is the same as the old
password, or if the password is less than 2 weeks old.

CONSIDERATIONS

The password ’ages’ 1 week at 00:00 GMT Thursday. This occurs on Wednesday,
either late afternoon or early evening within the 48 contiguous states.

Even though the super user may disobey the nontriviality tests, it is strongly
recommended that they be obeyed for the security of the system.

Configurations with dial-up access are strongly urged to assign a password for
the login name ’deamon’. This password will be the machine password.

FILE

/etc/passwd

SEE ALSO

admin(1), login(1)

235-700-200
November 1998

COMMANDS

PASSWD(1)

Issue 7.00 See Warning in Section 1.1 Page passwd-1

NAME

paste — merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste file1 file2 ...
paste -d list file1 file2 ...
paste -s [-d list] file1 file2 ...

DESCRIPTION

In the first two forms, paste concatenates corresponding lines of the given input
files file1, file2, etc. It treats each file as a column or columns of a table and
pastes them together horizontally (parallel merging). If you will, it is the
counterpart of cat (1) which concatenates vertically, that is, one file after the
other. In the last form above, paste replaces the function of an older command
with the same name by combining subsequent lines of the input file (serial
merging). In all cases, lines are glued together with the tab character, or with
characters from an optionally specified list. Output is to the standard output, so
it can be used as the start of a pipe, or as a filter, if - is used in place of a file
name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last
file (or last line in case of the -s option) are replaced by a tab
character. This option allows replacing the tab character by one or
more alternate characters (see below).

list One or more characters immediately following -d replace the
default tab as the line concatenation character. The list is used
circularly, that is, when exhausted, it is reused. In parallel merging
(that is, no -s option), the lines from the last file are always
terminated with a new-line character, not from the list. The list
may contain the special escape sequences: \n (new-line), \t (tab), \
(backslash), and \0 (empty string, not a null character). Quoting
may be necessary, if characters have special meaning to the shell
(for example, to get one backslash, use -d).

-s Merge subsequent lines rather than one from each input file. Use
tab for concatenation, unless a list is specified with -d option.
Regardless of the list, the very last character of the file is forced to
be a new-line.

- May be used in place of any file name, to read a line from the
standard input. (There is no prompting).

EXAMPLES

ls | paste -d" " - list directory in one column
ls | paste - - - - list directory in four columns
paste -s -d "\t\n" file combine pairs of lines into lines

SEE ALSO

cut(1), grep(1), pr(1)

235-700-200
November 1998

COMMANDS

PASTE(1)

Issue 7.00 See Warning in Section 1.1 Page paste-1

DIAGNOSTICS

line too long
Output lines are restricted to 511 characters.

too many files
Except for -s option, no more than 12 input files may be specified.

COMMANDS 235-700-200
November 1998

PASTE(1)

Page paste-2 See Warning in Section 1.1 Issue 7.00

NAME

pg — file perusal filter for soft-copy terminals

SYNOPSIS
pg [- number] [-p string] [-cefns] [+linenumber] [+/pattern] [files ...]

DESCRIPTION

The pg command is a filter which allows the examination of files one screen-full
at a time on a soft-copy terminal.

The file name - and/or NULL arguments indicate that pg should read from the
standard input. Each screenfull is followed by a prompt. If the user types a
carriage return, another page is displayed; other possibilities are described
below.

This command is different from previous paginators in that it allows you to
back up and review something that has already passed. The method for doing
this is explained below.

Only the vt100 family of terminals is supported.

The options are as follows:

-number Specifies the size (in lines) of the window that pg is to use instead
of the default size of 24 lines. The default number of columns is 80,
which cannot be changed. (On a terminal containing 24 lines, the
default window size is 23.)

-p string Causes pg to use string as the prompt. If the prompt string
contains a %d, the first occurrence of %d in the prompt is replaced
by the current page number when the prompt is issued. The
default prompt string is : .

-c Home the cursor and clear the screen before displaying each page.

-e Causes pg not to pause at the end of each file.

-f Normally, pg splits lines longer than the screen width, but some
sequences of characters in the text being displayed (i.e., escape
sequences for underlining) generate undesirable results. The -f
option inhibits pg from splitting lines.

-n Normally, commands must be terminated by a < newline >
character. This option causes an automatic end of command as soon
as a command letter is entered.

-s Causes pg to print all messages and prompts in standout mode
(usually inverse video).

+ linenumber
Start up at linenumber .

+/ pattern / Start up at the first line containing the regular expression pattern.

The responses that may be typed when pg pauses can be divided into three
categories: those causing further perusal, those that search, and those that
modify the perusal environment.

235-700-200
November 1998

COMMANDS

PG(1)

Issue 7.00 See Warning in Section 1.1 Page pg-1

Commands which cause further perusal normally take a preceding address, an
optionally signed number indicating the point from which further text should be
displayed. This .I address is interpreted in either pages or lines depending on
the command. A signed address specifies a point relative to the current page or
line, and an unsigned address specifies an address relative to the beginning of
the file. Each command has a default address that is used if none is provided.
The perusal commands and their defaults are as follows:

[+|-][num]<newline> or <blank>
Using absolute addressing, page num will be displayed. Using
relative addressing, the page num forward or backward from the
current page will be displayed.

[+|-][num] l Using absolute addressing displays a page beginning at the
specified line. Using relative addressing simulates scrolling the
screen, forward or backward, the specified number of lines.

[+|-] d or ^D
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address .

. or ^L Typing a single period causes the current page of text to be
redisplayed.

$ Displays the last windowfull in the file. Use with caution when the
input is a pipe.

The following commands are available for searching for text patterns in the
text. The regular expressions described in ed (1) are available. They must
always be terminated by a < newline >, even if the option is specified.

i / pattern / Searches forward for the i th (default i =1) occurrence of pattern.
Searching begins immediately after the current page and continues
to the end of the current file, without wraparound.

i ^ pattern ^
and

i ? pattern ? Searches backwards for the i th (default i =1) occurrence of ttern .
Searching begins immediately before the current page and
continues to the beginning of the current file, without wraparound.

After searching, pg normally displays the line found at the top of the screen.
This can be modified by appending m or b to the search command to leave the
line found in the middle or at the bottom of the window from now on. The suffix
t can be used to restore the original situation.

The perusal environment can be modified with the following commands:

i n Begin perusing the i th next file in the command line. The i is an
unsigned number, default value is 1.

i p Begin perusing the i th previous file in the command line. The i is
an unsigned number, default is 1.

i w Display another window of text. If i is present, set the window size
to i .

s filename Save the input in the named file. Only the current file being
perused is saved. The white space between the s and filename is

COMMANDS 235-700-200
November 1998

PG(1)

Page pg-2 See Warning in Section 1.1 Issue 7.00

optional. This command must always be terminated by a < newline
>, even if the option is specified.

h Help by displaying an abbreviated summary of available
commands.

q or Q Quit pg .

! command Command is passed to the shell, /bin/sh. This command must
always be terminated by a < newline >, even if the -n option is
specified.

At any time when output is being sent to the terminal, the user can hit the quit
key (normally control-ü or the interrupt (break) key. This causes pg to stop
sending output, and display the prompt. Then the user may enter one of the
above commands in the normal manner. Unfortunately, some output is lost
when this is done, because any characters waiting in the terminal’s output
queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts like the cat command,
except that a header is printed before each file (if there is more than one).

EXAMPLE

An example of pg usage is:
lf -l | pg -p "(Page %d):"

NOTES

While waiting for terminal input, pg responds to BREAK , DEL , and ^\ by
terminating execution. Between prompts, however, these signals interrupt pg’s
current task and place the user in prompt mode. These should be used with
caution when input is being read from a pipe, since an interrupt is likely to
terminate the other commands in the pipeline.

SEE ALSO

ed(1), grep(1)

CAVEATS

If terminal tabs are not set every eight positions, undesirable results may occur.

When using pg as a filter with another command that changes the terminal I/O
options, terminal settings may not be restored correctly.

235-700-200
November 1998

COMMANDS

PG(1)

Issue 7.00 See Warning in Section 1.1 Page pg-3

NAME

pio — physical I/O

SYNOPSIS
pio command

DESCRIPTION

Pio is executed using physical I/O to and from all files where possible. If
physical I/O is not possible, the system does the appropriate side-buffering.

This command is useful for doing check, dd, and other UNIX system commands
that make use of raw I/O.

EXAMPLE

pio dd if = /dev/ofln of = /dev/mt00 obsize = 2048 count = 512

SEE ALSO

cp(1)

235-700-200
November 1998

COMMANDS

PIO(1)

Issue 7.00 See Warning in Section 1.1 Page pio-1

NAME

pkill — terminate a process (superuser)

SYNOPSIS
pkill pid

DESCRIPTION

Pkill creates a new supervisor process from the file in /prc/pkill. A message
with the pid of the process to be killed is sent to the new supervisor process.
The supervisor process sends a terminate message to the process manager to
take down the process designated by pid.

SEE ALSO

ps(1)

LIMITATIONS

Pkill should only be used as a last resort to terminate a process. In cases where
it is necessary to forcibly terminate a copy of a shared supervisor, some
allocated resources may not be freed (buffers, semaphores, and so on). Therefore
a degradation of service may occur for all users sharing that supervisor.

In short, pkill of a supervisor should only be done to force a core dump of a
particular UNIX system process before you reboot . If you pkill a nonexistent or
a nonkillable process ID, an error message is generated.

235-700-200
November 1998

COMMANDS

PKILL(1)

Issue 7.00 See Warning in Section 1.1 Page pkill-1

NAME

pr — print files

SYNOPSIS
pr [options] [files]

DESCRIPTION

Pr prints the named files on the standard output. If file is - , or if no files are
specified, the standard input is assumed. By default, the listing is separated
into pages, each headed by the page number, a date and time, and the name of
the file.

By default, columns are of equal width, separated by at least one space; lines
which do not fit are truncated. If the -s option is used, lines are not truncated
and columns are separated by the separation character.

If the standard output is associated with a terminal, error messages are
withheld until pr has completed printing.

The options below may appear singly or be combined in any order:

+k Begin printing with page k (default is 1).

-k Produce k -column output (default is 1). The options -e and -i are
assumed for multicolumn output.

-a Print multicolumn output across the page.

-m Merge and print all files simultaneously, one per column (overrides
the -k, and -a options).

-d Double-space the output.

-eck Expand input tabs to character positions k "+1, 2*" k "+1, 3*" k +1,
etc. If k is 0 or is omitted, default tab settings at every eighth
position are assumed. Tab characters in the input are expanded
into the appropriate number of spaces. If c (any nondigit character)
is given, it is treated as the input tab character (default for c is the
tab character).

-ick In output , replace white space wherever possible by inserting tabs
to character positions k "+1, 2*" k "+1, 3*" k +1, etc. If k is 0 or is
omitted, default tab settings at every eighth position are assumed.
If c (any nondigit character) is given, it is treated as the output tab
character (default for c is the tab character).

-nck Provide k -digit line numbering (default for k is 5). The number
occupies the first k +1 character positions of each column of normal
output or each line of -m output. If c (any nondigit character) is
given, it is appended to the line number to separate it from
whatever follows (default for c is a tab).

-wk Set the width of a line to k character positions (default is 72 for
equal-width multi-column output, no limit otherwise).

-ok Offset each line by k character positions (default is 0). The number
of character positions per line is the sum of the width and offset.

-lk Set the length of a page to k lines (default is 66).

235-700-200
November 1998

COMMANDS

PR(1)

Issue 7.00 See Warning in Section 1.1 Page pr-1

-h Use the next argument as the header to be printed instead of the
file name.

-p Pause before beginning each page if the output is directed to a
terminal (pr will ring the bell at the terminal and wait for a
carriage return).

-f Use form-feed character for new pages (default is to use a sequence
of line-feeds). Pause before beginning the first page if the standard
output is associated with a terminal.

-r Print no diagnostic reports on failure to open files.

-t Print neither the 5-line identifying header nor the 5-line trailer
normally supplied for each page. Quit printing after the last line of
each file without spacing to the end of the page.

-sc Separate columns by the single character c instead of by the
appropriate number of spaces (default for c is a tab).

EXAMPLES

Print file1 and file2 as a double-spaced, 3-column listing headed by “file list’’:
pr -3dh "file list" file1 file2

Write file1 on file2 , expanding tabs to columns 10, 19, 28, 37, ... :
pr -e9 -t <file1 >file2

FILES

/dev/tty* to suspend messages

SEE ALSO

cat(1)

COMMANDS 235-700-200
November 1998

PR(1)

Page pr-2 See Warning in Section 1.1 Issue 7.00

NAME

ps — report process status

SYNOPSIS
ps [aklxp] [s swapdev] p t tlist]

DESCRIPTION

Ps prints certain information about active processes. Without options,
information is printed about processes associated with the current terminal.
The output consists of a short listing containing only the terminal identifier, the
process ID, and the command name. Otherwise, the information that is
displayed is controlled by the selection of the following options:

a Print information about all supervisor processes associated with
terminals.

k Print information about all kernel processes.

l Print a long listing

x Print information about all supervisor processes not associated
with a terminal.

p Include parent process number (cannot be used with k or l flags).

sswapdev Use the file swapdev in place of /dev/swap . This is useful when
examining a corefile.

ttlist Restrict listing to data about the processes associated with the
terminals given in tlist. Tlist is a list of terminal identifiers
separated from one another by a space.

The column headings and the meaning of the columns in a ps listing of
supervisor processes are given below:

PSTAT status flags.

PRI current priority.

KTIME time spent in the kernel in milliseconds.

KPTIM time spent in kernel processes in milliseconds.

STIME time spent in supervisor processes in milliseconds.

TTY terminal associated with the process. Normally this is the same as
the control channel for the process. If the control channel
corresponds to a nonprinting character, a ’?’ is printed in this field.

PID process number of this process.

PID process number of the parent process.

UTID utility ID of the process.

SIZE size of process in bytes.

SLEEP bit pattern on which the process in sleeping.

CMD command line used to invoke the process.

The column headings and the meanings of the columns in a ps listing of kernel
processes are given below:

235-700-200
November 1998

COMMANDS

PS(1)

Issue 7.00 See Warning in Section 1.1 Page ps-1

PSTATE process status flag.

PRI execution level.

TOUT real-time clock value for next time-out.

RTOUT interval between repetitive time-outs in milliseconds.

EVENTS event word.

CHAN control channel.

PID process number.

ADDR address of PCB segment descriptor entry.

DCT dispatcher control table index for the process.

UTID utility ID of the process.

DEVICE name of controller, device or process.

FILES
/dev/kmem

/dev/pmem

/dev/swap

/dmrt/kprc

SEE ALSO

kill(1)

NOTE

Things can change while ps is running; the picture it gives is only a close
approximation to reality.

COMMANDS 235-700-200
November 1998

PS(1)

Page ps-2 See Warning in Section 1.1 Issue 7.00

NAME

pst — processor resource status and timing information (a performance
measurement tool)

SYNOPSIS
pst {-Ddelay | -W} {-TkstafcL | -P pid pidn | -U uid1 uidn } [-Oks] [-I] [-pport]

DESCRIPTION

Pst is a tool that prints information on the status of system resources and/or the
activity of running processes on an active 3B20D computer system. The process
is a stand-alone users-level process that collects performance information from
the UNIX RTR operating system kernel. It is noninterfering to application
environments.

Pst can collect run time information on active processes. If requested, it will
print the percentage of time spent in the process and in the kernel on behalf of
the process (servicing ost requests). This percentage is based on the time
consumed by the process over the snapshot interval. These reports will print the
process pid and utility id. The process name and arguments must be obtained
from a ps or other listing (see -L flag below). This is done to minimize overhead
in the collection of data.

The tool works by collecting two samples of information from the kernel’s
address space. The two samples or snapshots are separated by a user definable
time delay. The first set of data is collected when the tool is first started or after
it receives the first E_USR event (see -D and -W options). The tool then sleeps
for the desired number of seconds or waits for a second E_USR event. It then
collects the second set of data. After the second set of data is collected, the
process calculates the differences between the two sets of data and outputs the
results to stdout.

The -T (type) arguments are:

k This option will provide timing information for all running kernel
processes. The execution level, pid, uid, and timing information is
provided.

s This option will provide timing information for all active supervisor
level processes. The tty, initial and current priority, pid, uid, and
timing information is provided.

t This option provides kernel timing and resource information. A
global view of real time usage is provided in histogram format for
each of the 16 execution levels supported by the operating system.
The consumption of major system resources is provided over the
requested snapshot interval.

a This option provides all of the t, s, and k data.

c This option provides a bar chart of real time consumption for each
execution level.

f This option provides a bar chart of real time availability at each
execution level.

L This option provides a long format report. For kernel processes, the

235-700-200
November 1998

COMMANDS

PST(1)

Issue 7.00 See Warning in Section 1.1 Page pst-1

process name is output. For supervisor processes, it includes the
process name, swap and dispatch counts, along with other
information. This option must be used with caution since it causes
pst to add all pcb segments to its address space. This can cause the
pst program to grow to a large size. Under times of extreme
memory overload, the pst program could hang if there is not
sufficient swappable memory for it to fit in the processor memory.

The -Ddelay parameter is used to specify the measurement interval. delay is the
time in seconds between the two snapshots.

The -W option is an alternative to the -Ddelay argument. This option allows the
pst tool to be synchronized with other activity through E_USR events. When
this argument is used, the program will wait for a E_USR event before taking
each of the two snapshots.

The -U parameter allows the user to specify a list of up to 20 utility ids of
processes to be snapshot. The data will be the same as the -Ts or -Tk
arguments, but only the processes specified will be snapped. Therefore, this
option cannot be used with the -Ts or -Tk parameters. All uid arguments must
be in hex (prefixed with X, x, 0X, or 0x).

The -P parameter is the same as the -U parameter with the exception that
process ids are specified instead of uids. The same limitation exists that the -Ts
and -Tk options cannot be used with the -P option. These must be specified in
decimal format.

The -O parameter specifies that OST usage counts are requested. The k and/or s
flags specify that kernel and/or supervisor ost counts be reported. At least one of
the k or s flags must follow the -O argument.

The -I parameter will provide interrupt usage information. Both software and
hardware interrupt counts will be provided.

The -pport parameter specifies that pst should attach to the system port port .
This parameter is useful when used with the -W argument or to guarantee that
only one copy of the process is executing at any time.

FILES

The pst command may be found in /usr/bin on the 3B20D computer.

COMMANDS 235-700-200
November 1998

PST(1)

Page pst-2 See Warning in Section 1.1 Issue 7.00

NAME

pwd — working directory name

SYNOPSIS
pwd

DESCRIPTION

Pwd prints the path name of the working (current) directory.

DIAGNOSTICS

“Cannot open ..’’ and “Read error in ..’’ indicate possible file system trouble and
should be referred to a UNIX system programming counselor.

235-700-200
November 1998

COMMANDS

PWD(1)

Issue 7.00 See Warning in Section 1.1 Page pwd-1

NAME

red

DESCRIPTION

See ed.

235-700-200
November 1998

COMMANDS

RED(1)

Issue 7.00 See Warning in Section 1.1 Page red-1

NAME

rm, rmdir — remove files or directories

SYNOPSIS
rm [-fri] file ...
rmdir dir ...

DESCRIPTION

Rm removes the entries for one or more files from a directory. If an entry was
the last link to the file, the file is destroyed. Removal of a file requires write
permission in its directory, but neither read nor write permission on the file
itself.

If a file has no write permission and the standard input is a terminal, its
permissions are printed and a line is read from the standard input. If that line
begins with y, the file is deleted; otherwise, the file remains. No questions are
asked when the -f option is given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed unless the
optional argument -r has been used. In that case, rm recursively deletes the
entire contents of the specified directory, and the directory itself.

If the -i (interactive) option is in effect, rm asks whether to delete each file; and,
under -r , whether to examine each directory.

Rmdir removes entries for the named directories, which must be empty.

DIAGNOSTICS

Generally, it is self-explanatory. It is forbidden to remove the file .. merely to
avoid the antisocial consequences of inadvertently doing something like the
following:

rm -r .*

235-700-200
November 1998

COMMANDS

RM(1)

Issue 7.00 See Warning in Section 1.1 Page rm-1

NAME

rmail

DESCRIPTION

See mail.

235-700-200
November 1998

COMMANDS

RMAIL(1)

Issue 7.00 See Warning in Section 1.1 Page rmail-1

NAME

rmdir

DESCRIPTION

See rm.

235-700-200
November 1998

COMMANDS

RMDIR(1)

Issue 7.00 See Warning in Section 1.1 Page rmdir-1

NAME

rsh

DESCRIPTION

See sh.

235-700-200
November 1998

COMMANDS

RSH(1)

Issue 7.00 See Warning in Section 1.1 Page rsh-1

NAME

run, urun — run an environment (superuser), run a user level process

SYNOPSIS
run [-b] [-f] file
run [-b] file

DESCRIPTION

Run starts up a new environment (task) either as a kernel process or a
supervisor process. Although run can execute a user process, such use is not
recommended, since the process will not be started with a user environment.

Urun forks and execs a UNIX system user-level process.

Two optional flags are as follows:

-b indicates the process is to be spawned in the background and the
death of the child process is not to be waited for. Normally, the
death of a child process is waited for.

-f indicates a nonzero value is to be passed in a message to the new
process created from the file contents by the process manager.

LIMITATIONS

A process that is run using this will inherit the channel id of its parent (the
shell). Thus, events generated for the shell’s channel (such as the E_INT caused
by hitting the break key) will be sent to the process.

235-700-200
November 1998

COMMANDS

RUN(1)

Issue 7.00 See Warning in Section 1.1 Page run-1

NAME

sdiff — side-by-side difference program

SYNOPSIS
sdiff [options ...] file1 file2

DESCRIPTION

Sdiff uses the output of diff (1) to produce a side-by-side listing of two files
indicating those lines that are different. Each line of the two files is printed
with a blank gutter between them if the lines are identical; a < in the gutter if
the line only exists in file1; a > in the gutter if the line only exists in file2; and
a | for lines that are different.

For example:

x | y
a a
b <
c <
d d
> c

The following options exist:

-wn Use the next argument, n, as the width of the output line. The
default line length is 130 characters.

-l Only print the left side of any lines that are identical.

-s Do not print identical lines.

-ooutput Use the next argument, output, as the name of a third file that is
created as a user-controlled merging of file1 and file2. Identical
lines of file1 and file2 are copied to output . Sets of differences, as
produced by diff (1), are printed; where a set of differences share a
common gutter character. After printing each set of differences,
sdiff prompts the user with a % and waits for one of the following
user-typed commands:

l append the left column to the output file.

r append the right column to the output file.

s turn on silent mode; do not print identical lines.

v turn off silent mode.

e l call the editor with the left column.

e r call the editor with the right column.

e b call the editor with the concatenation of left and right.

e call the editor with a zero length file.

q exit from the program.

235-700-200
November 1998

COMMANDS

SDIFF(1)

Issue 7.00 See Warning in Section 1.1 Page sdiff-1

On exit from the editor, the resulting file is concatenated on the end of the
output file.

SEE ALSO

diff(1), ed(1)

COMMANDS 235-700-200
November 1998

SDIFF(1)

Page sdiff-2 See Warning in Section 1.1 Issue 7.00

NAME

sed — stream editor

SYNOPSIS
sed [-n] [-e script] [-f sfile] [files]

DESCRIPTION

Sed copies the named files (standard input default) to the standard output; they
are edited according to a script of commands. The -f option causes the script to
be taken from file sfile ; these options accumulate. If there is just one -e option
and no -f options, the flag -e may be omitted. The -n option suppresses the
default output. A script consists of editing commands, one per line, of the
following form:

[addres s [, addres s]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space (unless
there is something left after a D command); applies in sequence all commands whose
addresses select that pattern space; and, at the end of the script, copies the pattern
space to the standard output (except under -n) and deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern space
for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across files; a $ that addresses the last line of input; or a context address, i.e., a
/regular expression/ in the style of ed(1) modified thus:

• In a context address, the construction \?regular expression?, where ? is any
character, is identical to /regular expression/. Note that in the context
address \xabc \xdefx, the second x stands for itself so that the regular
expression is abcxdef .

• The escape sequence \n matches a new line embedded in the pattern space.

• A period . matches any character except the terminal new line of the pattern
space.

• A command line with no addresses selects every pattern space.

• A command line with one address selects each pattern space that matches
the address.

• A command line with two addresses selects the inclusive range from the
first pattern space that matches the first address through the next pattern
space that matches the second. (If the second address is a number less than
or equal to the line number first selected; only one line is selected.)
Thereafter, the process is repeated, looking again for the first address.

Editing commands can be applied only to nonselected pattern spaces by use of
the negation function !.

In the following list of functions, the maximum number of permissible addresses
for each function is indicated in parentheses.

235-700-200
November 1998

COMMANDS

SED(1)

Issue 7.00 See Warning in Section 1.1 Page sed-1

The text argument consists of one or more lines; all but the last one end with \
to hide the new-line. Backslashes in text are treated like backslashes in the
replacement string of an s command, and may be used to protect initial blanks
and tabs against the stripping that is done on every script line. The rfile or
wfile argument must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before processing begins. At most, there
can be ten distinct wfile arguments.

(1)a\

text Append. Place text on the output before reading the next input line.

(2)blabel Branch to the : command bearing the label. If label is empty,
branch to the end of the script.

(2)c\

text Change. Delete the pattern space. With 0 or 1 address or at the
end of a 2-address range, placetext on the output. Start the next
cycle.

(2)d Delete the pattern space. Start the next cycle.

(2)D Delete the initial segment of the pattern space through the first
new line. Start the next cycle.

(2)g Replace the contents of the pattern space by the contents of the
hold space.

(2)G Append the contents of the hold space to the pattern space.

(2)h Replace the contents of the hold space by the contents of the
pattern space.

(2)H Append the contents of the pattern space to the hold space.

(1) i\

text Insert. Placetext on the standard output.

(2)l List the pattern space on the standard output in an unambiguous
form. Nonprinting characters are spelled in 2-digit ASCII and long
lines are folded.

(2)n Copy the pattern space to the standard output. Replace the pattern
space with the next line of input.

(2)N Append the next line of input to the pattern space with an
embedded new line. (The current line number changes.)

(2)p Print. Copy the pattern space to the standard output.

(2)P Copy the initial segment of the pattern space through the first new
line to the standard output.

(1)q Quit. Branch to the end of the script. Do not start a new cycle.

(2)r rfile Read the contents of rfile. Place them on the output before reading
the next input line.

(2)s /regular expression/replacement/flags
Substitute thereplacement string for instances of theregular
expression in the pattern space. Any character may be used instead
of / . For a fuller description, seeed (1).Flags is zero or more of:

COMMANDS 235-700-200
November 1998

SED(1)

Page sed-2 See Warning in Section 1.1 Issue 7.00

g Global. Substitute for all nonoverlapping instances of
theregular expression rather than just the first one.

p Print the pattern space if a replacement was made.

wwfile Write. Append the pattern space to wfile if a
replacement was made.

(2)t label Test. Branch to the : command bearing thelabel if any substitutions
have been made since the most recent reading of an input line or
execution of at. Iflabel is empty, branch to the end of the script.

(2)w wfile Write. Append the pattern space towfile .

(2)x Exchange the contents of the pattern and hold spaces.

(2)y /string1/string2/
Transform. Replace all occurrences of characters instring1 with the
corresponding character instring2 . The lengths of string1
andstring2 must be equal.

(2)! function
Don’t. Apply the function (or group, iffunction is{) only to linesnot
selected by the address(es).

(0): label This command does nothing; it bears alabel for b andt commands
to branch to.

(1)= Place the current line number on the standard output as a line.

(2){ Execute the following commands through a matching} only when
the pattern space is selected.

(0) An empty command is ignored.

SEE ALSO

ed(1), grep(1)

235-700-200
November 1998

COMMANDS

SED(1)

Issue 7.00 See Warning in Section 1.1 Page sed-3

NAME

sh, rsh — shell, the standard/restricted command programming language

SYNOPSIS
sh [-ceinrstuvx] [args]
rsh [-ceinrstuvx] [args]

DESCRIPTION

sh it is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. Rsh is a
restricted version of the standard command interpreter. Sh is a command
programming language that executes commands read from a terminal or a file.
See Invocation for the meaning of arguments to the shell.

Commands

A simple-command is a sequence of nonblank words separated by blanks (a
blank is a tab or a space). The first word specifies the name of the command to
be executed. Except as specified below, the remaining words are passed as
arguments to the invoked command. The command name is passed as argument
0. The value of a simple-command is its exit status if it terminates normally, or
(octal) 200+status if it terminates abnormally [see kill (1) for a list of status
values].

A pipeline is a sequence of one or more commands separated by ^ (or by a |).
The standard output of each command but the last is connected by a pipe to the
standard input of the next command. Each command is run as a separate
process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by ;, &, && , or || , and
optionally terminated by ; or &. Of these four symbols, ; and & have equal
precedence, which is lower than that of && and || . The symbols && and || also
have equal precedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execution of the
preceding pipeline (that is, the shell does not wait for that pipeline to finish).
The symbol && (||) causes the list following it to be executed only if the
preceding pipeline returns a zero (nonzero) exit status. An arbitrary number of
new lines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless
otherwise stated, the value returned by a command is that of the last
simple-command executed in the command.

for name in word ... do list done
Each time a for command is executed, name is set to the next word
taken from the in word list. If in word ... is omitted, then the for
command executes the do list once for each positional parameter
that is set (see Parameter Substitution below). Execution ends
when there are no more words in the list.

case word in pattern | pattern ...) list ;; ... esac
A case command executes the list associated with the first pattern
that matches word . The form of the patterns is the same as that
used for file-name generation (see File Name Generation).

235-700-200
November 1998

COMMANDS

SH(1)

Issue 7.00 See Warning in Section 1.1 Page sh-1

if list then list elif list then list ... else list fi
The list following if is executed; and, if it returns a zero exit status,
the list following the first then is executed. Otherwise, the list
following elif is executed; and, if its value is zero, the list following
the next then is executed. Failing that, the else list is executed. If
no else list or then list is executed, then the if command returns a
zero exit status.

while list do list done
A while command repeatedly executes the while list ; and, if the
exit status of the last command in the list is zero, executes the do
list. Otherwise the loop terminates. If no commands in the do list
are executed, then the while command returns a zero exit status;
until may be used in place of while to negate the loop termination
test.

(list) Execute list in a subshell.

{list;} list is simply executed.

The following reserved words are only recognized as the first word of the
command and then not quoted:

if n if then else elif fi case esac for while until do done { }

Comments

A word beginning with # causes that word and all the following characters up to
a new line to be ignored.

Aliasing

The first word of each command is replaced by the text of an alias if an alias for
this word has been defined. The replacement string can contain any character
excluding ";". Aliases can be used to redefine special built-in commands but
cannot be used to redefine the reserved words. Aliases can be created, modified,
and listed with the alias command and can be removed with the unalias
command.

Aliasing is performed when scripts are read, not while they are executed.
Therefore, for an alias to take effect the alias definition command has to be
executed before the command which references the alias is read.

Aliases are frequently used as a short hand for full path names or to customize
the behavior of other shell commands.

Command Substitution

The standard output from a command enclosed in a pair of grave accents (‘‘)
may be used as part or all of a word; trailing new lines are removed.

Parameter Substitution

The character $ is used to introduce substitutable parameters. Positional
parameters may be assigned values by set . Variables may be set by writing:

name = value

name = value

COMMANDS 235-700-200
November 1998

SH(1)

Page sh-2 See Warning in Section 1.1 Issue 7.00

...

Pattern-matching is not performed on value .

${parameter }
A parameter is a sequence of letters, digits, or underscores (a name
); a digit, or any of the characters *, @, #,?, -, $, and !. The value, if
any, of the parameter is substituted. The braces are required only
when parameter is followed by a letter, digit, or underscore that is
not to be interpreted as part of its name. A name must begin with
a letter or underscore. If parameter is a digit, then it is a positional
parameter. If parameter is * or @ , then all the positional
parameters, starting with $1, are substituted (separated by spaces).
Parameter $0 is set from argument zero when the shell is invoked.

${parameter :-word }
If parameter is set and is nonnull, then substitute its value;
otherwise, substitute word.

${parameter :=word }
If parameter is not set or is null, then set it to word; the value of
the parameter is then substituted. Positional parameters may not
be assigned to in this way.

${parameter :?word }
If parameter is set and is nonnull, then substitute its value;
otherwise, print word and exit from the shell. If word is omitted,
then the message “parameter null or not set’’ is printed.

${parameter :+word }
If parameter is set and is nonnull, then substitute word; otherwise,
substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted
string; so that, in the following example, pwd is executed only if d is not set or
is null:

echo ${d:-pwd}

If the colon (:) is omitted from the above expressions, then the shell only checks
whether parameter is set or not.

The following parameters are automatically set by the shell:

The number of positional parameters in decimal.

- Flags supplied to the shell on invocation or by the set command.

? The decimal value returned by the last synchronously executed
command.

$ The process number of this shell.

! The process number of the last background command invoked.

The following parameters are used by the shell:

HOME The default argument (home directory) for the cd command.

235-700-200
November 1998

COMMANDS

SH(1)

Issue 7.00 See Warning in Section 1.1 Page sh-3

PATH The search path for commands (see Execution below). The user
may not change PATH if executing under rsh.

MAIL If this variable is set to the name of a mail file, then the shell
informs the user of the arrival of mail in the specified file.

PS1 Primary prompt string, by default “ $” .

PS2 Secondary prompt string, by default “ > ” .

IFS Internal field separators, normally space, tab , and new-line .

ENV If this parameter is set, the value is used as the pathname to the
script that will be executed when the shell is invoked. (See
invocation.) This file is typically used for alias definitions.

The shell gives default values to PATH, PS1, PS2, and IFS, while HOME and
MAIL are not set at all by the shell [although HOME is set by login (1)].

Blank Interpretation

After parameter and command substitution, the results of substitution are
scanned for internal field separator characters (those found in IFS) and split
into distinct arguments where such characters are found. Explicit null
arguments ("" or ’ ’) are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed.

File Name Generation

Following substitution, each command word is scanned for the characters *, ?,
and [. If one of these characters appears, then the word is regarded as a
pattern. The word is replaced with alphabetically sorted file names that match
the pattern. If no file name is found that matches the pattern, then the word is
left unchanged. The character . at the start of a file name or immediately
following a / , as well as the character / itself, must be matched explicitly.

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters
separated by - matches any character lexically between the pair,
inclusive.

Quoting

The following characters have a special meaning to the shell and cause
termination of a word unless quoted:

; & () | ^ < > new-line space tab

A character may be quoted (that is, made to stand for itself) by preceding it with a \.
The pair \new-line is ignored. All characters enclosed between a pair of single quote
marks (’’), except a single quote, are quoted.

Inside double quote marks (""), parameter and command substitution occurs; \
quotes the characters \, , ", and $. "$*" is equivalent to "$1 $2 ..." ; whereas "$@"
is equivalent to "$1" "$2"

COMMANDS 235-700-200
November 1998

SH(1)

Page sh-4 See Warning in Section 1.1 Issue 7.00

Prompting

When used interactively, the shell prompts with the value of PS1 before reading
a command. If, at any time a new line is typed and further input is needed to
complete a command, then the secondary prompt (that is, the value of PS2) is
issued.

Input/Output

Before a command is executed, its input and output may be redirected using a
special notation interpreted by the shell. The following may appear anywhere in
a simple-command, or may precede or follow a command; and are not passed on
to the invoked command. Substitution occurs before word or digit is used:

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the file does
not exist then it is created; otherwise, it is truncated to zero
length.

>>word Use file word as standard output. If the file exists, then output is
appended to it (by first seeking to the end-of-file); otherwise, the
file is created.

<<-word The shell input is read up to a line that is the same as word, or to
an end-of-file. The resulting document becomes the standard input.
If any character of word is quoted, then no interpretation is placed
upon the characters of the document; otherwise, parameter and
command substitution occurs, (unescaped) \new-line is ignored, and
\ must be used to quote the characters \, $, , and the first
character of word. If - is appended to <<, then all leading tabs are
stripped from word and from the document.

<&digit The standard input is duplicated from file descriptor digit.
Similarly for the standard output using >.

<&- The standard input is closed. Similarly for the standard output
using >.

If one of the above is preceded by a digit, then the file descriptor created is that
specified by the digit (instead of the default 0 or 1). For example:

... 2 >&1

creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by &, then the default standard input for the
command is the empty file /dev/null . Otherwise, the environment for the
execution of a command contains the file descriptors of the invoking shell as
modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

Environment

The environment is a list of name-value pairs that is passed to an executed
program in the same way as a normal argument list. The shell interacts with
the environment in several ways. On invocation, the shell scans the
environment and creates a parameter for each name found, giving it the

235-700-200
November 1998

COMMANDS

SH(1)

Issue 7.00 See Warning in Section 1.1 Page sh-5

corresponding value. Executed commands inherit the same environment. If the
user modifies the values of these parameters or creates new ones, none of these
affects the environment unless the export command is used to bind the shell’s
parameter to the environment. The environment seen by any executed
command is thus composed of any unmodified name-value pairs originally
inherited by the shell, plus any modifications or additions, all of which must be
noted in export commands.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters, thus:

TERM=450 cmd args and

(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment, even
if they occur after the command name. The following first prints a=b c and then
c :

echo a=b c

set -k

echo a=b c

Signals

The INTERRUPT and QUIT signals for an invoked command are ignored if the
command is followed by &; otherwise, signals have the values inherited by the
shell from its parent, with the exception of signal 11 (but see also the trap
command below).

Execution

Each time a command is executed, the above substitutions are carried out.
Except for the Special Commands listed below, a new process is created and an
attempt is made to execute the command.

The shell parameter PATH defines the search path for the directory containing
the command. Alternative directory names are separated by a colon (:). The
default path is :/bin:/usr/bin (specifying the current directory, /bin , and /usr/bin ,
in that order). Note that the current directory is specified by a null path name,
which can appear immediately after the equal sign or between the colon
delimiters anywhere else in the path list. If the command name contains a /,
then the search path is not used; such commands will not be executed by the
restricted shell. Otherwise, each directory in the path is searched for an
executable file. If the file has execute permission but is not an a.out file, it is
assumed to be a file containing shell commands. A subshell (that is, a separate
process) is spawned to read it. A parenthesized command is also executed in a
subshell.

COMMANDS 235-700-200
November 1998

SH(1)

Page sh-6 See Warning in Section 1.1 Issue 7.00

Special Commands

The following commands are executed in the shell process and, except as
specified, no input/output redirection is permitted for such commands:

: No effect; the command does nothing. A zero exit code is returned.

. file Read and execute commands from file and return. The search path
specified by PATH is used to find the directory containing file.

alias [name[=value] ...]
Alias with no arguments prints the list of aliases in the form
name=value on standard output. If a name is specified with no
value, the name and value of the alias is printed. If both a name
and value are specified, an alias is defined. There are some size
limitations on the alias name and value. name can be no more
than 40 characters. value can contain up to 10 space separated
strings, each of which can be up to 40 characters. A value
containing spaces or other shell special characters must be quoted.

break n Exit from the enclosing for or while loop, if any. If n is specified,
then break n levels.

continue n Resume the next iteration of the enclosing for or while loop. If n is
specified, then resume at the nth enclosing loop.

cd arg Change the current directory to arg. The shell parameter HOME is
the default arg. The default path is <null> (specifying the current
directory). Note that the current directory is specified by a null
path name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If arg
begins with a /, then the search path is not used. Otherwise, each
directory in the path is searched for arg. The cd command may not
be executed by rsh.

eval arg ... The arguments are read as input to the shell and the resulting
command(s) executed.

exec arg ... The command specified by the arguments is executed in place of
this shell without creating a new process. Input/output arguments
may appear and, if no other arguments are given, cause the shell
input/output to be modified.

exit n Causes a shell to exit with the exit status specified by n. If n is
omitted, then the exit status is that of the last command executed
(an end-of-file will also cause the shell to exit). The exit command
is ignored in interactive (connected to a TTY) shells.

export name ...
The given names are marked for automatic export to the
environment of subsequently-executed commands. If no arguments
are given, then a list of all names that are exported in this shell is
printed.

newgrp arg ...
Equivalent to exec newgrp arg

read name ...
One line is read from the standard input and the first word is
assigned to the first name, the second word to the second name;
etc., with leftover words assigned to the last name. The return code
is 0 unless an end-of-file is encountered.

235-700-200
November 1998

COMMANDS

SH(1)

Issue 7.00 See Warning in Section 1.1 Page sh-7

readonly name ...
The given names are marked readonly and the values of the these
names may not be changed by subsequent assignment. If no
arguments are given, then a list of all readonly names is printed.

set -ekntuvx arg ...

-e Exit immediately if a command exits with a nonzero
exit status.

-k All keyword arguments are placed in the environment
for a command, not just those that precede the
command name.

-n Read commands but do not execute them.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are
executed.

–– Do not change any of the flags; useful in setting $1 to
-.

Using + rather than - causes these flags to be turned off. Also,
these flags can be used upon invocation of the shell. The current
set of flags may be found in $-. The remaining arguments are
positional parameters and are assigned, in order, to $1, $2, If no
arguments are given, then the values of all names are printed.

shift n The positional parameters from $n+1 ... are renamed $1 If n is
not given, it is assumed to be 1.

test test expr [expr]
Test evaluates the expression expr and, if its value is true, returns
a zero (true) exit status; otherwise, a nonzero (false) exit status is
returned; test also returns a nonzero exit status if there are no
arguments. The following primitives are used to construct expr :

-r file true if file exists and is readable.

-w file true if file exists and is writable.

-x file true if file exists and is executable.

-f file true if file exists and is a regular file.

-d file true if file exists and is a directory.

-c file true if file exists and is a character special file.

-b file true if file exists and is a block special file.

-p file true if file exists and is a named pipe (fifo).

-u file true if file exists and its set-user-ID bit is set.

-g file true if file exists and its set-group-ID bit is set.

-k file true if file exists and its sticky bit is set.

-s file true if file exists and has a size greater than zero.

COMMANDS 235-700-200
November 1998

SH(1)

Page sh-8 See Warning in Section 1.1 Issue 7.00

-t [fildes] true if the open file whose file descriptor number is
fildes (1 by default) is associated with a terminal
device.

-z s1 true if the length of string s1 is zero.

-n s1 true if the length of the string s1 is nonzero.

s1 = s2 true if strings s1 and s2 are identical.

s1 != s2 true if strings s1 and s2 are not identical.

s1 true if s1 is not the null string.

n1 -eq n2 true if the integers n1 and n2 are algebraically equal.
Any of the comparisons -ne, -gt, -ge, -lt , and -le may
be used in place of -eq.

These primaries may be combined with the following operators:

! unary negation operator.

-a binary and operator.

-o binary or operator (-a has higher precedence than -o).

(expr) parentheses for grouping.

Notice that all the operators and flags are separate arguments to test. Notice
also that parentheses are meaningful to the shell. Therefore, the parentheses
must be escaped.

times Print the accumulated user and system times for processes run
from the shell.

trap arg n ...
arg is a command to be read and executed when the shell receives
signal(s) n. (Note that arg is scanned once when the trap is set and
once when the trap is taken.) Trap commands are executed in order
of signal number. Any attempt to set a trap on a signal that was
ignored on entry to the current shell is ineffective. An attempt to
trap on signal 11 (memory fault) produces an error. If arg is absent,
then all trap(s) n are reset to their original values. If arg is the
null string, then this signal is ignored by the shell and by the
commands it invokes. If n is 0, then the command arg is executed
on exit from the shell. The trap command with no arguments prints
a list of commands associated with each signal number.

unalias [name ...
The name given is removed from the alias list.

umack nnn The user file-creation mask is set to nnn. If nnn is omitted, the
current value of the mask is printed.

wait n Wait for the specified process and report its termination status. If n
is not given, then all currently active child processes are waited for
and the return code is zero.

Invocation

If the shell is invoked through login and the first character of argument zero is
- , commands are initially read from /etc/profile and then from $HOME/.profile
(if such files exist). Next, commands are read from the file specified by the

235-700-200
November 1998

COMMANDS

SH(1)

Issue 7.00 See Warning in Section 1.1 Page sh-9

environment parameter ENV if the file exists. Thereafter, commands are read as
described below, which is also the case when the shell is invoked as /bin/sh. The
flags below are interpreted by the shell on invocation only. Note that unless the
-c or -s flag is specified, the first argument is assumed to be the name of a file
containing commands, and the remaining arguments are passed as positional
parameters to that command file. See below:

-c string If the -c flag is present, then commands are read from string.

-s If the -s flag is present or if no arguments remain, then commands
are read from the standard input. Any remaining arguments
specify the positional parameters. Shell output is written to file
descriptor 2.

-i If the -i flag is present or if the shell input and output are attached
to a terminal, then this shell is interactive. In this case,
TERMINATE is ignored (so that kill 0 does not kill an interactive
shell) and INTERRUPT is caught and ignored (so that wait is
interruptible). In all cases, QUIT is ignored by the shell.

-r If the -r flag is present, the shell is a restricted shell.

The remaining flags and arguments are described under the set command
above.

Rsh Only

Rsh is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. The actions of
rsh are identical to those of sh, except that the following are disallowed:

changing directory (cd),

setting the value of $PATH,

specifying path or command names containing /.

redirecting output (> and >>)

The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, rsh invokes sh
to execute it. Thus, it is possible to provide to the end-user with shell
procedures that have access to the full power of the standard shell, while
imposing a limited menu of commands; this scheme assumes that the end-user
does not have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete
control over user actions by performing guaranteed setup actions and leaving
the user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (that is,
/usr/rbin) that can be safely invoked by rsh. Some systems also provide a
restricted editor red .

COMMANDS 235-700-200
November 1998

SH(1)

Page sh-10 See Warning in Section 1.1 Issue 7.00

EXIT STATUS

Errors detected by the shell, such as syntax errors, cause the shell to return a
nonzero exit status. If the shell is being used noninteractively, then execution of
the shell file is abandoned. Otherwise, the shell returns the exit status of the
last command executed (see also the exit command above).

NOTE

See the stty(1) command about problems entering a | character.

FILES
/etc/profile

$HOME/. profile

/tmp/sh*

/dev/null

SEE ALSO

env(1), login(1), stty(1)

BUGS

The command readonly (without arguments) produces the same output as the
command export . If << is used to provide standard input to an asynchronous
process invoked by &, the shell gets mixed up about naming the input
document; a garbage file /tmp/sh* is created and the shell complains about not
being able to find that file by another name.

235-700-200
November 1998

COMMANDS

SH(1)

Issue 7.00 See Warning in Section 1.1 Page sh-11

NAME

sleep — suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

Sleep suspends execution for time seconds. It is used to execute a command
after a certain amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:
while true

do

command

sleep 37

done

BUGS

Time must be less than 65,536 seconds.

235-700-200
November 1998

COMMANDS

SLEEP(1)

Issue 7.00 See Warning in Section 1.1 Page sleep-1

NAME

sort — sort and/or merge files

SYNOPSIS
sort [-cmubdfinrtx] [+pos1 [-pos2]] ... [-o output] [names]

DESCRIPTION

Sort sorts lines of all the named files together and writes the result on the
standard output. The name - means the standard input. If no input files are
named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes
in machine collating sequence. The ordering is affected globally by the following
options, one or more of which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d ‘‘Dictionary’’ order: only letters, digits, and blanks are significant in
comparisons.

f Fold uppercase letters onto lowercase.

i Ignore characters outside the ASCII range 040-0176 in nonnumeric
comparisons.

n An initial numeric string, consisting of optional blanks, optional
minus sign, and zero or more digits with optional decimal point, is
sorted by arithmetic value. Option n implies option b.

r Reverse the sense of comparisons.

tx ‘‘Tab character’’ separating fields is x.

The notation + "pos1" - pos2 restricts a sort key to a field beginning at pos1 and
ending just before pos2. Pos1 and pos2 each have the form m.n, optionally
followed by one or more of the flags bdfinr , where m tells a number of fields to
skip from the beginning of the line and n tells a number of characters to skip
further. If any flags are present, they override all the global ordering options for
this key. If the b option is in effect, n is counted from the first nonblank in the
field; b is attached independently to pos2. A missing .n means .0; a missing -
pos2 means the end of the line. Under the -tx option, fields are strings
separated by x; otherwise, fields are nonempty, nonblank strings separated by
blanks.

When there are multiple sort keys, later keys are compared only after all earlier
keys compare equal. Lines that otherwise compare equal are ordered with all
bytes significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules;
give no output unless the file is out of sort.

m Merge only; the input files are already sorted.

u Suppress all but one in each set of equal lines. Ignored bytes and
bytes outside keys do not participate in this comparison.

235-700-200
November 1998

COMMANDS

SORT(1)

Issue 7.00 See Warning in Section 1.1 Page sort-1

o The next argument is the name of an output file to use instead of
the standard output. This file may be the same as one of the
inputs.

EXAMPLES

Print in alphabetical order all the unique spellings in a list of words (capitalized
words differ from uncapitalized):

sort -u +0f +0 list

Print the password file (/etc/passwd) sorted by user ID (the third colon-separated
field):

sort -t: +2n /etc/passwd

Print the first instance of each month in an already sorted file of (month-day) entries
(the options -um with just one input file make the choice of a unique representative
from a set of equal lines predictable):

sort -um +0 -1 dates

FILES

/usr/tmp/stm???

DIAGNOSTICS

Comments and exits with nonzero status for various trouble conditions and for
disorder discovered under option -c.

BUGS

Very long lines are silently truncated.

COMMANDS 235-700-200
November 1998

SORT(1)

Page sort-2 See Warning in Section 1.1 Issue 7.00

NAME

split — split a file into pieces

SYNOPSIS
split [-n] [file [prefix]]

DESCRIPTION

Split reads file and writes it in n -line pieces (default 1000 lines) onto a set of
output files. The name of the first output file is prefix with aa appended, and so
on lexicographically, up to zz (a maximum of 676 files). Name cannot be longer
than 12 characters. If no output prefix is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file
is used.

235-700-200
November 1998

COMMANDS

SPLIT(1)

Issue 7.00 See Warning in Section 1.1 Page split-1

NAME

stty — set the options for a terminal

SYNOPSIS
stty [-g] [options]

DESCRIPTION

Stty sets certain terminal I/O options for the device that is the current standard
input; without arguments, it reports the settings of certain options; with the -g
option, it reports current settings in a form that can be used as an argument to
another stty command. Note that many combinations of options make no sense,
but no sanity checking is performed. The options are selected from the
following:

even (-even)
allow (dissallow) even parity.

odd (-odd) allow (dissallow) odd parity.

0 hang up phone line immediately.

50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb
set terminal baud rate to the number given, if possible. (All speeds
are not supported by all hardware interfaces.)

hup (-hup) hang up (do not hang up) DATAPHONE1 service connection on last
close.

nl (-nl) allow only new-line (allow carriage return) to end input lines.

lcase (-lcase)
map (do not map) uppercase alphabetics to lowercase.

LCASE (-LCASE)
map (do not map) uppercase alphabetics to lowercase.

cr0 cr1 cr2 cr3
select delay for carriage returns (larger numbers are slower).

nl0 nl1 nl2 nl3
select delay for line-feeds (larger numbers are slower).

tab0 tab1 select delay for horizontal tabs (larger numbers are slower).

bs0 bs1 select delay for backspaces (larger numbers are slower).

ff0 ff1 select delay for form-feeds (larger numbers are slower).

cooked or -raw (raw)
enable (disable) canonical input (ERASE and KILL processing).

echo (-echo)
echo back (do not echo back) every character typed.

lfkc (-lfkc) echo (do not echo) LF after kill character.

erase c set erase character to c.

kill c set kill line character to c.

1. Registered trademark of Trademark of AT&T.

235-700-200
November 1998

COMMANDS

STTY(1)

Issue 7.00 See Warning in Section 1.1 Page stty-1

tabs (-tabs or tab3)
preserve (expand to spaces) tabs when printing.

ek reset ERASE and KILL characters back to normal # and @.

sane resets all modes to some reasonable values.

term set all modes suitable for the terminal type term, where term is one
of tty33, tty37, vt05, tn300, ti700 , or tek .

TN83 TN983

Terminals connected to TN83, TN983, and certain other specialized
asynchronous interface controllers operate in an unusual manner. Certain ones
have a line speed that is not selectable. Also, the START/STOP (^S/^Q)
characters have only a temporary effect. You can use ^X/^Z on these terminals
to START/STOP the output.

ECD

Some terminal ports may be configured within the ECD such that backslash (ü
does not work and the pipe character (|) hangs the terminal. This can be
corrected by using RCV to change form ’ttopt’. Change, on option_name ’UNIX’,
item 47 (escape) to xff and item 48 (escape_char) to x5c. For this to take effect,
you must remove (RMV) and restore (RST) the terminal port (TTY).

COMMANDS 235-700-200
November 1998

STTY(1)

Page stty-2 See Warning in Section 1.1 Issue 7.00

NAME

su — become super user or another user

SYNOPSIS
su [-] [name [arg ...]]

DESCRIPTION

Su allows one to become another user without logging off. The default user
name is root (that is, super user).

To use su, the appropriate password must be supplied (unless one is already
super user). If the password is correct, su will execute a new shell with the user
ID set to that of the specified user. To restore normal user ID privileges, type an
EOF to the new shell.

Any additional arguments are passed to the shell, permitting the super user to
run shell procedures with restricted privileges (an arg of the form -c string
executes string via the shell). When additional arguments are passed, /bin/sh is
always used. When no additional arguments are passed, su uses the shell
specified in the password file.

An initial - flag causes the environment to be changed to the one that would be
expected if the user actually logged in again. This is done by invoking the shell
with an arg0 of -su causing the .profile in the home directory of the new user
ID to be executed. Otherwise, the environment is passed along with the possible
exception of $PATH, which is set to /bin:/etc:/usr/bin for root. Note that the
.profile can check arg0 for -sh or -su to determine how it was invoked.

FILES

/etc/passwd system password file
$HOME/ . "profile user profile"

SEE ALSO

env(1), login(1), sh(1)

235-700-200
November 1998

COMMANDS

SU(1)

Issue 7.00 See Warning in Section 1.1 Page su-1

NAME

sum — print checksum and block count of a file

SYNOPSIS
sum [-r] file

DESCRIPTION

Sum calculates and prints a 16-bit checksum for the named file, and also prints
the number of blocks in the file. It is typically used to look for bad spots, or to
validate a file communicated over some transmission line. The option -r causes
an alternate algorithm to be used in computing the checksum.

SEE ALSO

wc(1)

DIAGNOSTICS

“Read error’’ is indistinguishable from end of file on most devices; check the
block count.

235-700-200
November 1998

COMMANDS

SUM(1)

Issue 7.00 See Warning in Section 1.1 Page sum-1

NAME

sync — update the super block

SYNOPSIS
sync

DESCRIPTION

Sync executes the sync system primitive. If the system is to be stopped, sync
must be called to insure file system integrity. It will flush all previously
unwritten system buffers out to disk; thus assuring that all file modifications up
to that point will be saved.

235-700-200
November 1998

COMMANDS

SYNC(1)

Issue 7.00 See Warning in Section 1.1 Page sync-1

NAME

tail — deliver the last part of a file

SYNOPSIS
tail [+- [number][ibc [f]]] [file]

DESCRIPTION

Tail copies the named file to the standard output beginning at a designated
place. If no file is named, the standard input is used.

Copying begins at distance + number from the beginning, or - number from the
end of the input (if number is null, the value 10 is assumed). Number is counted
in units of lines, blocks, or characters, according to the appended option l, b , or
c . When no units are specified, counting is by lines.

With the -f (‘‘follow’’) option, if the input file is not a pipe, the program will not
terminate after the line of the input file has been copied, but will enter an
endless loop; it sleeps for a second, and then attempts to read and copy further
records from the input file. Thus, it may be used to monitor the growth of a file
that is being written by some other process. For example, the command:

tail -f fred

will print the last ten lines of the file fred , followed by any lines that are appended to
fred between the time tail is initiated and killed. As another example, the command:

tail -15cf fred

will print the last 15 characters of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed.

SEE ALSO

dd(1)

BUGS

Tails relative to the end of the file are treasured up in a buffer, and thus are
limited in length. Various kinds of anomalous behavior may happen with
character special files.

235-700-200
November 1998

COMMANDS

TAIL(1)

Issue 7.00 See Warning in Section 1.1 Page tail-1

NAME

tee — pipe fitting

SYNOPSIS
tee [-i] [-a] [file] ...

DESCRIPTION

Tee transcribes the standard input to the standard output and makes copies in
the files . The -i option ignores interrupts; the -a option causes the output to be
appended to the files rather than overwriting them.

235-700-200
November 1998

COMMANDS

TEE(1)

Issue 7.00 See Warning in Section 1.1 Page tee-1

NAME

time — time a command

SYNOPSIS
time command

DESCRIPTION

The command is executed; after it is complete, time prints the elapsed time
during the command, the time spent in the system, and the time spent in
execution of the command. Times are reported in seconds.

The execution time can depend on what kind of memory the program happens
to land in; the user time in MOS (Module Operating System) is often half what
it is in core.

The times are printed on standard error.

235-700-200
November 1998

COMMANDS

TIME(1)

Issue 7.00 See Warning in Section 1.1 Page time-1

NAME

timer — find processes with large CPU (central processing unit) usage

SYNOPSIS
timer seconds

DESCRIPTION

Sometimes, a process will, due to unexpected events, start using large amounts
of CPU time. When this occurs, UNIX system level processes within the AM
(3B20D), such as recent change, may slow down to an unacceptable speed. The
timer(1) command aids in finding these large CPU using processes.

It operates by doing two ps(1) commands several minutes apart. Timer(1) then
calculates the CPU time used by each process between the two ps(1) commands
and prints a message showing the 12 highest CPU using processes.

The user specifies the time between the ps(1) commands, in seconds, as the
argument to the command. Valid times are from 30 to 3600 seconds.

To enter this command from the craft shell, with a 120-second interval enter, for
MML:

EXC:ENVIR:UPROC,FN="/bin/timer",ARGS=120;

For PDS enter:
EXC:ENVIR:UPROC,FN"/bin/timer",ARGS"120"!

FILES

/bin/timer
/bin/ps

235-700-200
November 1998

COMMANDS

TIMER(1)

Issue 7.00 See Warning in Section 1.1 Page timer-1

NAME

touch — update access and modification times of a file

SYNOPSIS
touch [-amc] [mmddhhmm[yy]] files

DESCRIPTION

Touch causes the access and modification times of each argument to be updated.
If no time is specified [see date (1)] the current time is used. The -a and -m
options cause touch to update only the access or modification times, respectively
(default is -am). The -c option silently prevents touch from creating the file, if
it did not previously exist.

The return code from touch is the number of files for which the times could not
be successfully modified (including files that did not exist and were not created).

SEE ALSO

date(1)

235-700-200
November 1998

COMMANDS

TOUCH(1)

Issue 7.00 See Warning in Section 1.1 Page touch-1

NAME

tr — translate characters

SYNOPSIS
tr [-cds] [string1 [string2]]

DESCRIPTION

Tr copies the standard input to the standard output with substitution or
deletion of selected characters. Input characters found in string1 are mapped
into the corresponding characters of string2. Any combination of the options
-cds may be used:

-c Complements the set of characters in string1 with respect to the
universe of characters whose ASCII codes are 001 through 377
octal.

-d Deletes all input characters in string1 .

-s Squeezes all strings of repeated output characters that are in
string2 to single characters.

The following abbreviation conventions may be used to introduce ranges of
characters or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes run from
character a to character z, inclusive.

[a * n] Stands for n repetitions of a. If the first digit of n is 0 , n is
considered octal; otherwise, n is taken to be decimal. A zero or
missing n is taken to be huge; this facility is useful for padding
string2 .

The escape character []may be used as in the shell to remove special meaning
from any character in a string. In addition, []followed by 1, 2, or 3 octal digits
stands for the character whose ASCII code is given by those digits.

The following example creates a list of all the words in file1 one per line in file2,
where a word is taken to be a maximal string of alphabetics. The strings are
quoted to protect the special characters from interpretation by the shell; 012 is
the ASCII code for newline.

tr -cs "[A-Z][a-z]" "[[0]12*]" <file1 >file2

SEE ALSO

ed(1), sh(1).
ascii(5) in the UTS Programmer Reference Manual.

BUGS

Will not handle ASCIINUL instring1 orstring2 ; always deletesNUL from input.

235-700-200
November 1998

COMMANDS

TR(1)

Issue 7.00 See Warning in Section 1.1 Page tr-1

NAME

true, false — provide thruth values

SYNOPSIS
true
false

DESCRIPTION

True does nothing successfully. They are typically used in input to sh (1) such
as:

while true

do

command

done

False

does nothing unsuccessfully.

SEE ALSO

sh(1)

DIAGNOSTICS

True has exit status zero; false nonzero.

235-700-200
November 1998

COMMANDS

TRUE(1)

Issue 7.00 See Warning in Section 1.1 Page true-1

NAME

tty — get the terminal name

SYNOPSIS
tty [-s]

DESCRIPTION

tty prints the path name of the user’s terminal. The -s option inhibits printing
of the terminal path name, allowing one to test only the exit code.

EXIT CODES

2 if invalid options were specified,
0 if standard input is a terminal,
1 otherwise.

DIAGNOSTICS

“not a tty’’ if the standard input is not a terminal and -s is not specified.

235-700-200
November 1998

COMMANDS

TTY(1)

Issue 7.00 See Warning in Section 1.1 Page tty-1

NAME

udgnnm — generic special diagnostic filename

SYNOPSIS
udgnnm unit-name unit-number

DESCRIPTION

Udgnnm generics the special file set up by dgnnm. It also frees the unit.

FILES

/dev/mount
/tmp/ecdxxxxxx
/tmp/xxx

SEE ALSO

dgnnm(1)

DIAGNOSTICS

Error numbers are returned and may be found in MOVEerrcod.h.

LIMITATIONS

The interface buffer used by dgnnm is passed to this program in /tmp/ectbuf. If
this is lost, there is no way to free the unit.

235-700-200
November 1998

COMMANDS

UDGNNM(1)

Issue 7.00 See Warning in Section 1.1 Page udgnnm-1

NAME

umount

DESCRIPTION

See mount.

235-700-200
November 1998

COMMANDS

UMOUNT(1)

Issue 7.00 See Warning in Section 1.1 Page umount-1

NAME

uname — print name of current UNIX system

SYNOPSIS
uname [-snrva]

DESCRIPTION

Uname prints the current system name of the UNIX system on the standard
output file. It is mainly useful to determine what system one is using. The
options cause the selected information to be printed:

-s print the system name (default).

-n print the nodename (the nodename may be a name that the system
is known by to a communications network).

-r print the operating system release.

-v print the operating system version.

-a print all the above information.

Arguments, not recognized, default the command to the -s option.

235-700-200
November 1998

COMMANDS

UNAME(1)

Issue 7.00 See Warning in Section 1.1 Page uname-1

NAME

uncompress

DESCRIPTION

See compress.

235-700-200
November 1998

COMMANDS

UNCOMPRESS(1)

Issue 7.00 See Warning in Section 1.1 Page uncompress-1

NAME

urun

DESCRIPTION

See run.

235-700-200
November 1998

COMMANDS

URUN(1)

Issue 7.00 See Warning in Section 1.1 Page urun-1

NAME

vcp — volume copy

SYNOPSIS
/etc/vcp from to [startingblk] nblocks -

DESCRIPTION

Vcp can be used to make a contiguous copy of a file. First use falloc(1) to
allocate the file; then use vcp to copy a file into the contiguous space. The from
parameter is an existing file to be the source of the data. The to parameter is
the previously allocated contiguous file to receive the data. Nblocks is the
number of blocks of data to copy. If a dash (-) is given, then a dot (.) will be
printed on the terminal every time 256 blocks are copied.

The startingblk option is not normally useful.

235-700-200
November 1998

COMMANDS

VCP(1)

Issue 7.00 See Warning in Section 1.1 Page vcp-1

NAME

Vexpand — Reproduce a target file from its’ compressed representation.

SYNOPSIS
vexpand [-t] target [-d] delta [-ssource][-llog]

DESCRIPTION

vexpandcommand is used in conjunction with the vcompress command to
represent a file (the targetin a compressed format that can be reproduced to its’
original form. The vcompress command produces a compressed representation
(the deltafile) of the targetfile in one or two ways. First, the deltafile may be
created using a strict compression algorithm, similar to compress (1). In this
method, the target file is simply compressed and no source file is specified. The
second method is data differencing, whereby the targetfile is compared to a
specified sourcefile, nothing differences.

The vexpand command reproduces the targetfile from the deltafile. The
optionalsourcefile is used as a base for target creation and is specified only if
the vcompress data differencing method was used when creating the deltafile.

The command line options are:

—t target Specifies the name of the file to be created from the compressed
format contained in the deltafile.

—d delta Specifies the name of the file containing the compressed format of
the target.

—s source Optionally specifies the name of a source file to be used as a base
for target creation. This option is required if data differencing was
used when creating the delta file.

—l log Optionally specifies the name of a file where output normally
intended for stdout stderr is to be redirected.

Exhibit 1 —

File new1 is a modified version of previous1. To compress new1 into file delta by
the data differencing method using previous1 as a base for comparison execute
the following:

• vcompress —t new1 —s previous1 —d delta

To reproduce new1 from the delta file execute the following:

• vexpand —t new1 —s previous1 —d delta

235-700-200
November 1998

COMMANDS

VEXPAND (1)

Issue 7.00 See Waring in Section 1.1 Page vexpand-1

Exhibit 2 —

Newly created file newcmd.sh is to be compressed into a file delta without data
differencing (i.e. there is no existing file that can be used as a base for
comparison). Execute the following:

• vcompress —t newcmd.sh —d delta

To reproduce newchmd.sh from the delta file execute the following:

• vexpand —t newcmd.sh —d delta

HEADER FILES

sfio.h, vdelta.h.

SEE ALSO

vcompress(1), diff(1), compress(1).

DIAGNOSTICS

vexpand returns 0 upon successful completion and 1 upon failure.

Upon successful completion, vexpand outputs the checksum for the newly
created target file to stdout (or optionally the file specified by the —1 option) in
the following format:

• Target Sum= ttttt

Where ttttt is the checksum of the complete target file (equivalent to sum —r).

Upon failure, stderr (or optionally the file specified by the —1 option). Special
attention should be paid to the following messages:

• vexpand: Bad Delta

A read error occurred while attempting to read the delta file header data
(e.g. magic number, target size, or window size). The delta file may be
corrupted.

• vexpand: Bad magic number

The magic number in the delta file header conflicts with that in vexpand.
The delta may be corrupted or was created by an incompatible version of
vcompress.

• vexpand: No source file.

The delta file was created using a source file and data differencing, but no
source file was specified on the vexpand command line.

• vexpand: Source file size mismatch.

The size of the source file used to create the deltadisagrees with the size of
the source file specified on the vexpand command line.

• vexpand: internal error <errnum>.

COMMANDS 235-700-200
November 1998

VEXPAND (1)

Page vexpand-2 See Waring in Section 1.1 Issue 7.00

An internal error occurred within vexpand. The errnum, along with the
delta file and any optional source file should be reported to your support
organization.

LIMITATIONS

None

LIBRARIES

libvdelta.a, sfio.a.

235-700-200
November 1998

COMMANDS

VEXPAND (1)

Issue 7.00 See Waring in Section 1.1 Page vexpand-3

NAME

vcompress — produce a compressed representation of a target file.

SYNOPSIS
vcompress -t target -d delta [-s source] [-l log] [-c]

DESCRIPTION

The vcompress command is used in conjunction with the vexpand (1) command
to represent a file (the target) in a compressed format that can be reproduced to
its’ original form. The vcompress command produces a compressed
representation (the delta file) of the target file in one of two ways. First, the
delta file may be created using a strict compression algorithm, similar to
compress (1) . In this mode, compression only, the target file is simply
compressed and no source file is specified. The second mode is data differencing,
whereby the target file is compared to a specified source file, nothing
differences.

The vexpand (1) command reproduces the target file from the delta file, and
optionally the source file, if the method of compression by vcompress was data
differencing.

The command line options are:

—t target Specifies the name of the file to be represented in compressed
format.

—d delta Specifies the name of the file to be generated, which will contain
the compressed format of the target.

—s source Optionally specifies the name of a source file to be used for data
differencing.

—l log Optionally specifies the name of a file where output normally
intended for stdout and stderr is to be redirected.

—c Optionally specifies to perform special coff file header processing.
This processing writes the entire header portion of a coff formatted
file to the delta file. By doing this, vexpand (1) will reproduce the
header portion of the file by copying it from the delta file, instead
of using data differencing and the source file. This is necessary in
the software update, SU, environment where the headers in the SU
viewpath are not necessarily byte for byte comparable with the
headers on a 5ESS®-2000 switch. Specifying this option for files
that are not in coff format or for files being compressed using the
compression only mode has no effect.

235-700-200
November 1998

COMMANDS

4PRESS (1)

Issue 7.00 See Warning in Section 1.1 Page vcompress-1

Exhibit 1 —

File new1 is a modified version of previous1. To compress new1 into file delta by
the data differencing method using previous1 as a base for comparison execute
the following:

• vcompress —t new1 —s previous1 —d delta

To reproduce new1 from the delta file execute the following:

• vexpand —t new1 —s previous1 —d delta

Exhibit 2 —

Newly created file newcmd.sh is to be compressed into a file delta without data
differencing (i.e. there is no existing file that can be used as a base for
comparison). Execute the following:

• vcompress —t newcmd.sh —d delta

To reproduce newchmd.sh from the delta file execute the following:

• vexpand —t newcmd.sh —d delta

HEADER FILES

sfio.h, vdelta.h.

SEE ALSO

vexpand(1), diff(1), compress(1).

DIAGNOSTICS

vcompress returns 0 upon successful completion and 1 upon failure.

Upon successful completion, vcompress outputs the checksum for the target file
and optional source file to stdout (or optionally the file specified by the —l
option) in the following format:

• Target Sum=ttttt Source Sum= sssss

where ttttt and sssss are the complete checksums of the corresponding file
(equivalent to sum —r).

Upon failure vcompress outputs error messages to stderr (or optionally the file
specified by the —l option). Special attention should be paid to the following
message:

• vcompress:internal error <errnum>

An internal error occurred within vcompress . The errnum, along with the
target file and any optional source file should be reported to your support
organization.

COMMANDS 235-700-200
November 1998

4PRESS (1)

Page vcompress-2 See Warning in Section 1.1 Issue 7.00

LIBRARIES

libvdelta.a, sfio.a.

235-700-200
November 1998

COMMANDS

4PRESS (1)

Issue 7.00 See Warning in Section 1.1 Page vcompress-3

NAME

vi — screen-oriented (visual) display editor based on ex

SYNOPSIS
vi [-r file] p-L] [-wn] [-R] [+command] [-c command] file ...

DESCRIPTION

vi (visual) is a display-oriented text editor based on an underlying line editor ex
(1). It is possible to use the command mode of ex from within vi.

When using vi , changes you make to the file are reflected in what you see on
your terminal screen. The position of the cursor on the screen indicates the
position within the file.

INVOCATION

The following invocation options are interpreted by vi :

-r file Recovers file after an editor or system crash. If file is not specified,
a list of all saved files is printed.

-L Lists the name of all files saved as the result of an editor or system
crash.

-w n Sets the default window size to n. This is useful when using the
editor over a slow speed line.

-R Read only mode; the readonly flag is set, preventing accidental
overwriting of the file.

[-c|+] command
The specified ex command is interpreted before editing begins.

The file argument indicates files to be edited.

If you invoke vi on a file and edit it, then discover the file is read-only when you
try to save the changes, you can save the changes made to the file by doing the
following:

Enter:
:!chmod u+rw filename <CR>

After the command executes, and you press the RETURN key to continue editing the
file, you can save the changes made to the buffer by entering:

:w!<CR>

Now, you can add more changes to the file or quit the edit session. The changes will be
saved.

VI MODES

Command Normal and initial mode. Other modes return to command mode
upon completion. ESC (escape) is used to cancel a partial
command.

Input Entered by the following options a i A I o O c C s S R . Arbitrary

235-700-200
November 1998

COMMANDS

VI(1)

Issue 7.00 See Warning in Section 1.1 Page vi-1

text may then be entered. Input mode is normally terminated with
the ESC character, or abnormally with interrupt.

Last Line Reading input for : / ? or !; terminate with CR to execute, interrupt
to cancel.

COMMAND MODES

Sample Commands

← ↓ ↑ → arrow keys move the cursor
h j k l same as arrow keys
itextESC insert text abc
cwnewESC change word to new
easESC pluralize word
x delete a character
dw delete a word
dd delete a line
3dd ... 3 lines
u undo previous change
ZZ exit vi, saving changes
:q!CR quit, discarding changes
/textCR search for text
^U ^D scroll up or down
:ex cmdCR any ex or ed command

Counts Before vi Commands

Numbers may be typed as a prefix to some commands. They are interpreted in
one of the following ways:

line/column number z G |
scroll amount ^D ^U
repeat effect most of the rest

Interrupting, Canceling

ESC end insert or incomplete cmd
DEL (delete or rubout) interrupts
^L reprint screen if DEL scrambles it
^R reprint screen if ^L is → key

File Manipulation

COMMANDS 235-700-200
November 1998

VI(1)

Page vi-2 See Warning in Section 1.1 Issue 7.00

ZZ if file modified, write and exit; otherwise, exit
:wCR write back changes
:w!CR forced write, if permission originally not valid
:qCR quit
:q!CR quit, discard changes
:e nameCR edit file name
:e!CR reedit, discard changes
:e + nameCR edit, starting at end
:e +nCR edit starting at line n
:e #CR edit alternate file
:e! #CR edit alternate file, discard changes synonym

for :e #
:w nameCR write file name
:w! nameCR overwrite file name
:shCR run shell, then return
:!cmdCR run cmd, then return
:nCR edit next file in arglist
:n argsCR specify new arglist
^G show current file and line

Positioning Within File

235-700-200
November 1998

COMMANDS

VI(1)

Issue 7.00 See Warning in Section 1.1 Page vi-3

^F forward screen
^B backward screen
^D scroll down half screen
^U scroll up half screen
nG go to the beginning of the specified line

(end default), where n is a line number
G go to specified line (end default)
/pat next line matching pat
?pat previous line matching pat
n repeat last / or ?
N reverse last / or ?
/pat/+ n nth line after pat
?pat?- n nth line before pat
]] next section/function
[[previous section/function
(beginning of sentence
) end of sentence
{ beginning of paragraph
} end of paragraph
% find matchin g () { or }

Adjusting the Screen

COMMANDS 235-700-200
November 1998

VI(1)

Page vi-4 See Warning in Section 1.1 Issue 7.00

^L clear and redraw
^R retype, eliminate @ lines
zCR redraw, current at window top
z- ... at bottom
z. ... at center
/pat/z- pat line at bottom
/pat/z. ... at center
zn. use n line window
^E scroll window down 1 line
^Y scroll window up 1 line

Marking and Returning

‘;‘; move cursor to previous context
´´ ... at first non-white in line
mx mark current position with letter x
‘;x move cursor to mark x
´x ... at first non-white in line

Line Positioning

235-700-200
November 1998

COMMANDS

VI(1)

Issue 7.00 See Warning in Section 1.1 Page vi-5

H top line on screen
L last line on screen
M middle line on screen
+ next line, at first non-white
- previous line, at first non-white
CR return, same as +
↓ or j next line, same column
↑ or k previous line, same column

Character Positioning

^ first non white
0 beginning of line
$ end-of-line
h or ← backwards
l or → forward
^H same as ←
space same as →
fx find x forward
Fx f backward
tx upto x forward
Tx back upto x
; repeat las t f F t or T
, repeat inverse of las t f F t or T
n| move to column n
% find matchin g ({) or }

Words, Sentences, Paragraphs

COMMANDS 235-700-200
November 1998

VI(1)

Page vi-6 See Warning in Section 1.1 Issue 7.00

w word forward
b back word
e end of word
) to next sentence
} to next paragraph
(back sentence
{ back paragraph
W blank delimited word
B back W
E to end of W

Corrections During Insert

^H erase last character
^W erase last word
erase your erase, same as ^H
kill your kill, erase input this line
\ quotes ^H, your erase and kill
ESC ends insertion, back to command
DEL interrupt, terminates insert
^D backtab over autoindent
0^D backtab to beginning of line;

reset left margin of autoindent
^^D caret (^) followed by control-d (^D); backtab

to beginning of line; do not reset left margin
of autoindent

^V quote non-printing character
↑^D kill autoindent, save for next

Insert and Replace

a append after cursor
i insert before cursor
A append at end-of-line
I insert before first non-blank
o open line below
O open above
rx replace single char with x
Rtext ESC replace characters

Operators

Operators are followed by a cursor motion, and affect all text that would have
been moved over. For example, sincew moves over a word,dw deletes the word
that would be moved over. Double the operator, i.e.,dd to affect whole lines.

235-700-200
November 1998

COMMANDS

VI(1)

Issue 7.00 See Warning in Section 1.1 Page vi-7

d delete
c change
y yank lines to buffer
< left shift
> right shift
! filter through command
= indent for -2LISP

Miscellnaeous Operations

C change rest of line (c$)
D delete rest of line (d$)
s substitute characters (cl)
S substitute lines (cc)
J join lines
x delete characters (dl)
X ... before cursor (dh)
Y yank lines (yy)

Yank and Put

Put inserts the text most recently deleted or yanked. However, if a buffer is
named, the text in that buffer is put instead.

3yy yank 3 lines
3yl yank 3 characters
p put back text after cursor
P put before cursor
"xp put from buffer x
"xy yank to buffer x
"xd delete into buffer x

Undo, Redo, Retrieve

u undo last change
U restore current line
. repeat last change
"dp retrieve d’th last delete

AUTHOR

vi was developed by The University of California, Berkeley California,
Computer Science Division, Department of Electrical Engineering and
Computer Science.

FILES

/tmp/Ex?????
temporary file used by vi during an edit session.

COMMANDS 235-700-200
November 1998

VI(1)

Page vi-8 See Warning in Section 1.1 Issue 7.00

/tmp/Ex?????
recoverable edited file preserved as a result of a killed edit session.

/usr/lib/exstrings
data file containing vi output messages.

WARNING

The -x and -C encryption options are not available under RTR, because the
crypt(1) command is not supported.

Only vt100 family of terminals is supported.

CAVEATS

Software tabs using ^T works only immediately after theautoindent.

Left and right shifts on intelligent terminals do not make use of insert and
delete character operations in the terminal.

If you edit a file and try to write the file when all it contains is a newline, the
editor removes the newline and the file contains zero characters.

If the file you are editing has no characters, i.e. zero length, and you exit using
ZZ, the file will not be written. Exiting using :wq does create a zero length file.

235-700-200
November 1998

COMMANDS

VI(1)

Issue 7.00 See Warning in Section 1.1 Page vi-9

NAME

wc — word count

SYNOPSIS
wc [-lwc] [names]

DESCRIPTION

Wc counts lines, words, and characters in the named files or in the standard
input if no names appear. It also keeps a total count for all named files. A word
is a maximal string of characters delimited by spaces, tabs, or new lines.

The options l, w , and c may be used in any combination to specify that a subset
of lines, words, and characters are to be reported. The default is -lwc .

When names are specified on the command line, they will be printed along with
the counts.

235-700-200
November 1998

COMMANDS

WC(1)

Issue 7.00 See Warning in Section 1.1 Page wc-1

NAME

who — who is on the system

SYNOPSIS
who [file]
who am i

DESCRIPTION

Who can list the user’s name, terminal line, login time, elapsed time since
activity occurred on the line, and the process-ID of the command interpreter
(shell) for each current UNIX system user. It examines the /etc/utmp file to
obtain its information. If file is given, that file is examined. Usually, file will be
/etc/wtmp , which contains a history of all the logins since the file was last
created.

Who with the am i option identifies the invoking user.

FILES

/etc/utmp
/etc/wtmp
/etc/inittab

SEE ALSO

date(1), login(1), mesg(1), su(1)

235-700-200
November 1998

COMMANDS

WHO(1)

Issue 7.00 See Warning in Section 1.1 Page who-1

NAME

write — write to another user

SYNOPSIS
write user [line]

DESCRIPTION

Write copies lines from your terminal to that of another user. When first called,
it sends the message:

Message from your login (tty ??) [date] ...

to the person you want to talk to. When it has successfully completed the connection,
it also sends two bells to your own terminal to indicate that what you are typing is
being sent.

The recipient of the message should write back at this point. Communication
continues until an end of file is read from the terminal or an interrupt is sent.
At that point, write writes EOT on the other terminal and exits.

If you want to write to a user who is logged in more than once, the line
argument may be used to indicate which line or terminal to send to (for
example, tty00); otherwise, the first instance of the user found in /etc/utmp is
assumed and the following message posted:

user is logged on more than one place.

You are connected to " terminal ″.

Other locations are:

terminal

Permission to write may be denied or granted by use of the mesg(1) command. Writing
to others is normally allowed by default. Certain commands, in particular pr(1)
disallows messages in order to prevent interference with their output. However, if the
user has super user permissions, messages can be forced onto a write inhibited
terminal.

If the character ! is found at the beginning of a line, write calls the shell to
execute the rest of the line as a command.

The following protocol is suggested for using write: when you first write to
another user, wait for them to write back before starting to send. Each person
should end a message with a distinctive signal [that is, (o) for “over’’] so that
the other person knows when to reply. The signal (oo) (for ‘‘over and out’’) is
suggested when conversation is to be terminated.

FILES

/etc/utmp to find user
/bin/sh to execute !

235-700-200
November 1998

COMMANDS

WRITE(1)

Issue 7.00 See Warning in Section 1.1 Page write-1

SEE ALSO

mail(1), mesg(1), pr(1), sh(1), who(1)

DIAGNOSTICS

“user not logged in” if the person you are trying to write to is not logged in.

COMMANDS 235-700-200
November 1998

WRITE(1)

Page write-2 See Warning in Section 1.1 Issue 7.00

NAME

zcat

DESCRIPTION

See compress.

235-700-200
November 1998

COMMANDS

ZCAT(1)

Issue 7.00 See Warning in Section 1.1 Page zcat-1

GLOSSARY

This section provides acronyms, terms, and abbreviations used in this manual.

GLOSSARY

ACCED — Access Editor

Administration — Administration is a number of related functions with the objective
of ensuring the overall provision of service by the 5ESS®-2000 switch.
Administration includes the assignment of lines and trunks to the system, memory
management, collection of traffic and plant data, provisions for additions and
modifications to the switch, service evaluation, and capabilities to control and
manage the 5ESS-2000 switch. The primary objective of administration is to
assure that the 5ESS-2000 switch delivers a high level of quality service to the
subscribing customers. This is accomplished by monitoring and evaluating system
performance. Potential problems that could cause service deterioration are
identified.

AM — Administrative Module

The AM is that part of the 5ESS-2000 switch which performs the part of call
processing, administration, and maintenance which cannot be economically
distributed to the switching modules. The AM consists of the processor, disk
storage, and tape backup units. The AM processor performs the centralized
processing functions, high-speed tape, and controls the flow of data between the
other dedicated processors distributed throughout the remaining units. The
processor functions are fully duplicated (except for the port switch) in order to
assure continued processing capability.

ANSI — American National Standards Institute

AP — Applications Processor

ARS — Automatic Route Selection

ASCII — American Standard Code for Information Interchange

AT — Access Tandem

BOC — Bell Operating Company

BORSCHT — Battery Feed, Overvoltage Protection, Ringing, Etc. Functions

BPS — Bits Per Second

A measure of the speed with which data communications can move over a line.
Also abbreviated as bps, B/S, and b/s.

BRI — Basic Rate Interface

BST — Basic Services Terminal

CC — Control Console

CE — Control Equipment

CI — Critical Indicator

CCITT — International Telephone and Telegraph Consultative Committee

CIU — Craft Interface Unit

235-700-200
November 1998

GLOSSARY

Issue 7.00 Page G-1

CLEI — Common Language Equipment Identification

CM — Communication Module

CNI — Common Network Interface

CO — Central Office

COER — Central Office Equipment Reports

COT — Central Office Terminal

CPE — Customer Premises Equipment

CRT — Cathode Ray Tube

DA — Discontinued Availability

DAS — Data Auxiliary Set

DFC — Disk File Controller

DFI — Digital Facility Interface

DMA — Direct Memory Access

DN — Directory Number

DP — Dial Pulse

DSU — Digital Service Unit

DTMF — Dual Tone Multifrequency

EADAS — Engineering and Administrative Data Acquisition System

A mechanized system that is part of Lucent supplied OSS and is a near real-time
data collection and surveillance system. Data transmitted over the data link
interface of the 5ESS-2000 switch is collected and summarized by a data processor
system.

EADAS/NM — EADAS/Network Management

EAI — Emergency Action Interface

ECD — Equipment Configuration Data Base

EIA — Electronics Industry Association

EMACS — EMACS is a screen editor that can be used to create or to edit files using a
display terminal.

EOC — Embedded Operations Channel

ESF — Extended Super Frame

FIT — Fully-Initializing Terminal

Hz — Hertz/Cycles per Second

IC — Interexchange Carrier

IMR — Initial Modification Request

I/O — Input/Output

IOP — Input Output Processor

GLOSSARY 235-700-200
November 1998

Page G-2 Issue 7.00

IPM — Interruptions Per Minute

ISDN — Integrated Services Digital Network

LED — Light-Emitting Diode

LTD — Local Test Desk

MCC — Master Control Center

Provides craft interface of a 5ESS-2000 switch office. Consists of a video display
terminal with keyboard, ROP, and a key telephone set. The TLWS is also part of
the MCC.

MFOS — Multifunctional Operations System

MFT — Metallic Facility Terminal

MIM — Management Information Messages

MML — Man-Machine Language

MMSU — Modular Metallic Service Unit

MTTY — Maintenance Teletypewriter

NCLK — Network Clock

NCT — Network Control and Timing

NDL — New Data Link

NIT — Non-Initializing Terminal

NM — Network Management

Network Management is a set of real-time procedures aimed at optimizing
network performance when the network is under stress due to adverse conditions.
The NM provides and operates control and surveillance features that aid in
maintaining the network integrity and security during overloads and failures.

OA&M — Operations, Administration, and Maintenance

OAM&P — Operations, Administration, Maintenance, and Provisioning

ODA — Office Data Administration

The mechanism by which initial translation information may be assembled for a
5ESS-2000 switch. Information from the 5ESS-2000 switch is entered via a video
terminal and transferred into an ODA computer, assembled, then sent to the
5ESS-2000 switch.

ODBE — Office Data Base Editor

ODD — Office Dependent Data

ORP — Office Records Printer

OS — Operations Systems

OSC — Operator Service Center

OSPS — Operator Services Position System

235-700-200
November 1998

GLOSSARY

Issue 7.00 Page G-3

OSS — Operations Support System

Service that provides the routine operations needed to maintain and engineer the
telephone network.

OTC — Operating Telephone Company

A service organization using telephone equipment to provide communications for
its customers.

PBX — Private Branch Exchange

Provides business customers service that allows a group of lines to make
intragroup calls on an extension dialed basis plus allowing direct inward dialed
calls from regular telephone network.

PC — Personal Computer

PC — Peripheral Controller

PICB — Peripheral Interface Control Bus

PIDB — Peripheral Interface Data Bus

PIN — Personal Identification Number

A number used to identify the customer using the ABC service.

PODS — Plain Old Digital Service

POTS — Plain Old Telephone Service

PPS — Pulses Per Second

PROM — Programmable Read Only Memory

RB — Ringback

RBOC — Regional Bell Operating Companies

ROP — Receive-Only Printer

RT — Remote Terminal

RTR — Real Time Reliable

SCANS — Software Change Administration and Notification System

SCC — Switching Control Center

SCCS — Switching Control Center System

A centralized system that controls the switching operations of many switches.

SCSI — Small Computer System Interface

SD — Schematic Drawing

SM — Switching Module

Equipment consisting of the module controller unit, time slot interchange unit,
local digital service unit, and analog and digital interface units. The SM performs
95 percent of all switching performed in the 5ESS-2000 switch. When an SM is
remotely located, it is referred to as an RSM (Remote Switching Module). When an
SM is used to support an RSM, it is referred to as an HSM (host SM).

GLOSSARY 235-700-200
November 1998

Page G-4 Issue 7.00

SPCS — Stored Program Control System

STLWS — Supplementary Trunk and Line Work Station

TELCO — Telephone Company

TLWS — Trunk and Line Work Station

TMT — Transmission Maintenance Terminal

TOD — Time Of Day

TOPAS — Trunk, Operations, Provisioning, and Administrative System

TSI — Time Slot Interchange

TSPS — Traffic Service Position System

A type of Traffic Service System having stored program control that provides for
the processing and recording of special calls requiring operator assistance.

TT — Touch-Tone

TTF — Transmission Test Facility

TTY — Teletypewriter

TTYC — Teletypewriter Controller

TU — Trunk Unit

VDT — Video Display Terminal

VF — Voice Frequency’

235-700-200
November 1998

GLOSSARY

Issue 7.00 Page G-5

NUMERICAL

3B20D computer, 1-1, 1-4

A

ACCED, 3-4
Access, 4-7, 4-9, 4-26
Access editor, 3-4
Access files, 4-7
Actual login, 3-2
Adding a second password, 3-2
Adding new logins, 3-1
Administration, 1-1, 1-2, 3-1
Advanced editing, 4-4, 4-10
Advanced editing commands, 4-4, 4-12
Advanced replace commands, 4-13
Advanced search commands, 4-13
Argument, 1-3, 4-4, 4-5, 4-6, 4-8, 4-12, 4-14, 4-17, 4-18, 4-19, 4-25, 4-26
Argument prototype, 1-3
Arguments, 2-2, 4-3
Arguments - command line, 4-26
ASCII, 4-1, 4-2, 4-12, 4-14, 4-24
ASCII 0, 4-1
ASCII 0177, 4-1
ASCII 033, 4-1
ASCII 034, 4-1
ASCII 035, 4-2
ASCII 036, 4-2
ASCII 037, 4-2
ASCII characters, 4-1
Assistance, technical, 1-4

B

Basic action, 4-8
Basic commands, 4-23, 4-26
Basic concepts, 4-1
Basic EMACS commands, 4-3
Baud rate, 3-3
Break, 2-2
Buffer display, 4-2, 4-12, 4-13
Buffer name, 4-7, 4-9, 4-20
Buffer number, 4-2, 4-9
Buffer text, 4-2
Bugs, 1-3

C

C program, 4-1, 4-17, 4-19, 4-22
Cable, 3-1
Carriage-return, 2-2

235-700-200 INDEX
November 1998

Issue 7.00 Page I-1

Character sequence, 4-13, 4-14, 4-18
Character set, 4-1
Characters, 2-1, 2-2
Ciopt form, 3-3
Command language procedures, 1-2
Command line, 4-16, 4-18, 4-25, 4-26
Command line arguments, 4-26
Command modes, 4-22
Command name, 2-2
Command structure, 4-3
Commands, 1-1, 1-2, 1-3, 1-4, 1-5, 2-1, 3-2
Commands related to windows, 4-12
Commands that escape to the UNIX RTR operating system, 4-15
Computer Access Restriction, 3-4
Conclusions, 4-27
Configuration, 3-1
Constructing regular expressions, 4-13
Control character, 4-2, 4-4, 4-10, 4-11, 4-12, 4-13, 4-18, 4-23, 4-24
Control character commands, 4-4
Control characters, 4-5
Control-D, 3-2, 3-4
Control-S, 2-2
Conventional login, 3-1
Conventions, 1-3
Craft shell, 3-2
Cron, 1-5
CRT, 2-2
Current directory, 2-3
Cursor movement commands, 4-5

D

Data base, 3-3
Data base changes for a dial-up recent change terminal, 3-3
Data base changes for a dial-up STLWS, 3-3
DC3, 2-2
Deamon password, 3-2
Default argument, 4-3, 4-8
Default values, 4-18, 4-19
Defined buffers, 4-9
Defining macros, 4-18
Deleting text, 4-1
Deletion commands, 4-6
Description, 1-2
Description of UNIX RTR operating system availability feature, 1-4
Diagnostics, 1-2
Dial-up facilities, 3-1, 3-3
Dial-up recent change terminal, 3-4
Dial-up terminals, 3-2
Dial-up text recent change terminal, 3-1, 3-3
Dial-up users, 3-2
Display, 3-3, 4-2

INDEX 235-700-200
November 1998

Page I-2 Issue 7.00

Display buffer, 4-2
Display modes, 4-19
Display region, 3-3, 3-4
Display screen, 4-2, 4-19
Display terminal, 4-1, 4-27
Displaying parameters, 4-2
Displays, 4-1, 4-5, 4-12, 4-17, 4-18, 4-23
Duplex switch, 2-1

E

ECD, 3-1, 3-3, 3-4
Ed editor, 4-1, 4-12, 4-13
Editing commands, 4-1, 4-3, 4-4
Editor command, 4-1
Editor cursor, 4-2
Editor limitations, 4-27
EMACS, 4-2, 4-5, 4-8, 4-9, 4-12, 4-13, 4-14, 4-15, 4-16, 4-17, 4-18, 4-19, 4-20, 4-22,

4-23, 4-24, 4-25, 4-26, 4-27
EMACS commands, 4-1, 4-3, 4-14
EMACS description, 1-1, 1-2, 4-1
EMACS editor, 4-27
EMACS/macros, 4-8, 4-15, 4-22
EMACS/macros/CATALOG, 4-15
Empty buffer name, 4-9
Entering commands, 4-3, 4-24
Entering parameters, 4-3, 4-4
Entries, 1-2, 1-3
Entry, 1-2
Equipment configuration data, 3-1
Equivalent printable character, 4-1
Error message, 4-5, 4-8, 4-9, 4-16, 4-20, 4-22, 4-23
Escape character, 4-1, 4-2, 4-12
Escape commands to the UNIX RTR operating system, 4-15
Escape key, 4-4
Escape sequences, 4-1
/etc/passwd, 3-1
Examples, 1-2
Exit, 3-2
External security code, 3-1

F

File accessing commands, 4-8
File name, 4-2, 4-7, 4-8, 4-9, 4-15, 4-16, 4-24, 4-26
Files, 1-2
Files - organization, 1-5
Formal training, 1-1
Full-duplex, 2-1
Full-duplex input/output terminal, 2-1
Function keys, 4-4

235-700-200 INDEX
November 1998

Issue 7.00 Page I-3

G

Getting help, 4-4
Getting out of trouble, 4-4
Getting started, 1-1, 1-2, 2-1, 4-25
Global replacements, 4-10
Glossary, 1-1, 5.124-1

H

Hardware, 3-1, 3-3
How to communicate through your terminal, 2-1
How to run a program, 2-2

I

Incremental search, 4-11, 4-12, 4-22
Indentation, 4-22
Independent entries, 1-2
Initialization file, 4-25, 4-26
Initializations, 4-14
Initialize the teletypewriter controller, 3-4
Input files, 4-14
Input line, 2-1, 2-2
Input/output processor, 3-1
Inserting control characters, 4-12
Inserting odd characters, 4-12
Inserting text, 4-3, 4-17
Interface modes, 4-20
Internal trouble, 4-27
Interrupt, 2-2
Introduction, 1-1, 1-2, 3-1, 4-1
IOP, 3-1, 3-3
IOP cable, 3-1

K

Keyboard character bindings, 4-18
Keyboard macro, 4-14, 4-15, 4-18, 4-25
Keyboard macros, 4-14
Keyboards, 4-6
Kill, 2-1

L

Limitations of the editor, 4-27
Literals, 1-3
Lnumb, 4-2, 4-19
Logging in, 2-1
Logging off, 3-4
Login, 3-1, 3-4
Login capability, 3-1

INDEX 235-700-200
November 1998

Page I-4 Issue 7.00

Login capability features, 3-1
Login code, 3-1
Login name, 2-1, 3-2
Login process, 3-1, 3-3, 3-4
Login sequence, 2-1
Login software, 3-1
Login name, 3-2
Logins, 1-1, 1-5
Logout procedure, 2-1
Lucent Technologies Customer Information Center, 1-4

M

Macro command, 4-18
Macro name, 4-15, 4-18
Macro programming facility, 4-14
Macros, 4-14
Man, 1-5
Master control center, 3-1
MCC, 3-1
Meta character, 4-2, 4-3, 4-4
Meta character commands, 4-4
Miscellaneous commands, 4-10, 4-16
Mode name, 4-25
Modes, 4-19
Modes - command, 4-22
Modes - display’, 4-19
Modes - interface, 4-20
Modes - terminal, 4-24
More advanced commands, 4-3
Moving commands, 4-6

N

Name, 1-2
Network access password, 3-1
New logins, 3-1, 3-2
Newline character, 4-2, 4-21
Normal shell conventions, 4-8
Numeric argument, 4-3

O

ODBE, 3-4
Office data base editor, 3-4
ON/OFF modes, 4-19
Optional second password, 3-1, 3-2
Options, 4-5, 4-12, 4-26
Ordinary printing characters, 4-3
Organization, 1-1
Organization of files, 1-5

235-700-200 INDEX
November 1998

Issue 7.00 Page I-5

P

Parameters, 4-2, 4-3, 4-4, 4-18, 4-19
Passwd deamon, 3-2
Password protected commands, 3-4, 3-6
Password security, 3-1
Pathnames, 2-3
PDS12, 3-3
PDS12C, 3-3
Picture images, 4-23
Picture mode, 4-20, 4-23
Previous argument prototype, 1-3
Printable ASCII text, 4-14
Printing characters, 4-1, 4-3
Profile, 2-1
Program test, 4-2
Prompt, 4-2, 4-3, 4-4, 4-7, 4-8, 4-9, 4-11, 4-13, 4-14, 4-16, 4-17, 4-18, 4-19, 4-20
Purpose, 1-1

Q

Query, 4-11, 4-12, 4-14, 4-18, 4-21

R

Recent change terminal, 3-1, 3-3, 3-4
Recovering from various problems, 4-27
Regional Technical Assistance Center, 1-4
Regular expression search, 4-14
Regular expressions, 4-13
Replace, 4-10
Replace command, 4-5, 4-27
Replacing text, 4-1
ROP, 1-5
Rubout, 2-2
Running EMACS, 4-27

S

Screen editor, 4-1
Screen width, 4-2
Scroll region, 3-3
Search, 4-10
Search command, 4-14
Search commands - advanced, 4-13
Search string, 4-10, 4-11, 4-14, 4-21
Second password, 3-1, 3-2
Secure dial-up facility, 3-3
Security, 3-2
See also, 1-2, 1-3
Shell, 1-2, 2-1, 2-2
Simple cursor movement commands, 4-5

INDEX 235-700-200
November 1998

Page I-6 Issue 7.00

Simple file and buffer commands, 4-7
Simple moving commands, 4-6
Simple Search and Replace, 4-10
Simple text deleting commands, 4-6
Software, 3-1
Special commands, 4-7
Specifying default modes for a file, 4-25
Status information, 4-2, 4-17
Status line, 4-2, 4-9, 4-12
STLWS, 3-1
STLWSCG, 3-3
stty command, 2-1, 2-2
Subroutines, 1-2
Substitute command, 4-12
Supplementary trunk line work station, 3-1
Surprises, 2-3
Control-Q, 2-2
DC1, 2-2
Synopsis, 1-2, 1-3
System source programs, 2-2

T

Tab characters, 2-2
Technical Assistance, 1-4
Teletypewriter controller, 3-3, 3-4
Terminal, 2-1
Terminal bell, 4-5, 4-24
Terminal cursor, 4-2
Terminal modes, 4-24
Terminal type, 4-19, 4-25
Text deleting commands, 4-6
Text editing, 4-27
Text in the buffer, 4-2
Text insertion, 4-3
TTYC, 3-4
Two dimensional editing, 4-23
Typical screen, 4-2

U

Undo, 4-4, 4-27
/unixa, 1-4, 1-5
/unixabf, 1-4
/unixa/tmp, 1-5
/unixa/users, 1-4, 1-5
/unixa/users/manager, 1-5
UNIX RTR, 3-1
UNIX RTR operating system, 1-1, 1-2, 1-4, 1-5, 2-1, 2-2, 2-3, 3-1, 3-2, 3-4, 4-1, 4-5, 4-9,

4-10, 4-15, 4-16, 4-20, 4-21, 4-23, 4-25, 4-27
UNIX RTR operating system availability, 1-2, 1-4
UNIX RTR operating system availability feature, 1-4

235-700-200 INDEX
November 1998

Issue 7.00 Page I-7

UNIX RTR operating system commands, 3-5
UNIX RTR operating system escape commands, 4-15
UNIX RTR operating system shell, 3-4
UNIX RTR system, 3-1
UNIX system, 3-1
UNIX system quick reference guide - 307-129, 2-1
UNIX system users’ handbook - 320-042, 2-1
UNIXsystem users’ handbook - 320-042, 2-3
Unusual non-printing characters, 4-1
Update information, 1-1
Updating, 3-1
User Feedback, 1-3
User handbook, 2-1, 2-3
Using the login, 3-4

V

Variable, 3-2
Various editing functions, 4-3
Various modes, 4-25
Visual display appears, 4-1
VT100DAP, 3-3

W

Warning error message, 4-5
Warnings, 1-2
Window commands, 4-12

INDEX 235-700-200
November 1998

Page I-8 Issue 7.00

	Figures and Tables
	FIGURES CH.3
	FIGURES CH. 4
	TABLES CH. 4

	1. INTRODUCTION
	1.1 PURPOSE
	1.2 UPDATE INFORMATION
	1.3 ORGANIZATION
	1.4 USER FEEDBACK
	1.5 DISTRIBUTION
	1.6 TECHNICAL ASSISTANCE
	1.7 UNIXRTR OPERATING SYSTEM AVAILABILITY FEATURE
	1.7.1 DESCRIPTION
	1.7.2 ORGANIZATION OF FILES

	2. GETTING STARTED
	2.1 BASIC INFORMATION
	2.2 LOGGING IN
	2.3 HOW TO COMMUNICATE THROUGH YOUR TERMINAL
	2.4 HOW TO RUN A PROGRAM
	2.5 THE CURRENT DIRECTORY
	2.6 PATHNAMES
	2.7 SURPRISES

	3. ADMINISTRATION
	3.1 INTRODUCTION
	3.1.1 DIAL-UP FACILITIES
	3.1.2 LOGIN CAPABILITY FEATURES

	3.2 HARDWARE
	3.3 SOFTWARE
	3.3.1 GENERAL
	3.3.2 ADDING NEW LOGINS
	3.3.3 ADDING A SECOND PASSWORD (OPTIONAL)
	3.3.4 DATA BASE

	3.4 INITIALIZE THE TELETYPEWRITER CONTROLLER
	3.5 USING THE LOGIN
	3.5.1 GENERAL
	3.5.2 LOGGING OFF

	3.6 PASSWORD PROTECTED COMMANDS
	3.7 MODIFYING THE RM COMMAND DEFAULT OPTIONS

	4. EMACS DESCRIPTION
	4.1 INTRODUCTION
	4.2 BASIC CONCEPTS
	4.2.1 GENERAL
	4.2.2 THE CHARACTER SET
	4.2.3 THE DISPLAY
	4.2.4 THE TEXT IN THE BUFFER
	4.2.5 COMMAND STRUCTURE
	4.2.6 ARGUMENTS AND PARAMETERS

	4.3 BASIC EMACS COMMANDS
	4.3.1 GENERAL
	4.3.2 GETTING HELP OR GETTING OUT OF TROUBLE
	4.3.3 SIMPLE CURSOR MOVEMENT COMMANDS
	4.3.4 SIMPLE TEXT DELETING AND MOVING COMMANDS
	4.3.5 SIMPLE FILE AND BUFFER COMMANDS
	4.3.6 SIMPLE SEARCH AND REPLACE

	4.4 ADVANCED EDITING COMMANDS
	4.4.1 GENERAL
	4.4.2 INSERTING ODD CHARACTERS
	4.4.3 COMMANDS RELATED TO WINDOWS
	4.4.4 ADVANCED SEARCH AND REPLACE COMMANDS
	4.4.5 MACROS, KEYBOARD MACROS, AND INPUT FILES
	4.4.6 COMMANDS THAT ESCAPE TO THE UNIXRTR OPERATING SYSTEM
	4.4.7 MISCELLANEOUS COMMANDS

	4.5 MODES
	4.5.1 GENERAL
	4.5.2 DISPLAY MODES (PARAMETERS)
	4.5.3 INTERFACE MODES
	4.5.4 COMMAND MODES
	4.5.5 TERMINAL MODES
	4.5.6 SPECIFYING DEFAULT MODES FOR A FILE

	4.6 GETTING STARTED
	4.6.1 GENERAL
	4.6.2 TERMINAL TYPE
	4.6.3 INITIALIZATION FILE
	4.6.4 COMMAND LINE ARGUMENTS
	4.6.5 HELPFUL HINTS
	4.6.6 LIMITATIONS OF THE EDITOR
	4.6.7 RECOVERING FROM VARIOUS PROBLEMS

	4.7 CONCLUSIONS

	5. COMMANDS
	ADMIN(1)
	AT(1)
	ATOMSW(1)
	AWK(1)
	BANNER(1)
	BASENAME(1)
	Batch(1)
	CAT(1)
	CFTSHELL(1)
	CHGRP(1)
	CHMOD(1)
	CHOWN(1)
	CLOSEWD(1)
	CLRFS(1)
	CLRI(1)
	CMP(1)
	COFLSB(1)
	COMPRESS(1)
	CP(1)
	CPIO(1)
	CRON(1)
	CRONTAB(1)
	CUT(1)
	CX(1)
	DATE(1)
	DC(1)
	DD(1)
	DF(1)
	DGNNM(1)
	DIFF(1)
	DIRNAME(1)
	DLSUM(1)
	DU(1)
	ECHO(1)
	ED(1)
	EDOBJ(1)
	EMACS(1)
	ENV(1)
	ERRPORT(1)
	EXPR(1)
	FALLOC(1)
	FALSE(1)
	FGREP(1)
	FIND(1)
	FMOVE(1)
	FSAUDIT(1)
	FSDB(1)
	FSINIT(1)
	FSIZE(1)
	grep(1)
	ICHK(1)
	ID(1)
	KILL(1)
	KILLP(1)
	LF(1)
	LINE(1)
	LN(1)
	LOGDIR(1)
	LOGIN(1)
	LPR(1)
	LS(1)
	MAIL(1)
	MAN(1)
	MESG(1)
	MKDIR(1)
	MKDSK(1)
	MKNOD(1)
	MKSTART(1)
	MOUNT(1)
	MSNAP(1)
	MV(1)
	NEWGRP(1)
	NEWS(1)
	NICE(1)
	NOHUP(1)
	OD(1)
	OPENWD(1)
	PARCHK(1)
	PASSWD(1)
	PASTE(1)
	PG(1)
	PIO(1)
	PKILL(1)
	PR(1)
	PS(1)
	PST(1)
	PWD(1)
	RED(1)
	RM(1)
	RMAIL(1)
	RMDIR(1)
	RSH(1)
	RUN(1)
	SDIFF(1)
	SED(1)
	SH(1)
	SLEEP(1)
	SORT(1)
	SPLIT(1)
	STTY(1)
	SU(1)
	SUM(1)
	SYNC(1)
	TAIL(1)
	TEE(1)
	TIME(1)
	TIMER(1)
	TOUCH(1)
	TR(1)
	TRUE(1)
	TTY(1)
	UDGNNM(1)
	UMOUNT(1)
	UNAME(1)
	UNCOMPRESS(1)
	URUN(1)
	VCP(1)
	VEXPAND (1)
	4PRESS (1)
	VI(1)
	WC(1)
	WHO(1)
	WRITE(1)
	ZCAT(1)

	GLOSSARY
	INDEX

